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Background

Annually, 80 billion pairs of chopsticks are
manufactured in China alone (Oon, 2022). This
excessive production of chopsticks leads to en-
vironmental issues, as waste wooden utensils
fill up landfills. In attempts for sustainable re-
purposing, researchers and manufacturers use
chopsticks as a source for different materials
such as bio-oil (Chang et al., 2016), ethanol
(Asada et al, 2011), and fuel (Chiang et al,,
2012). Another study tackled the collection of
cellulose nanofibrils from Aspen and Bode
chopsticks (Suzuki et al.,, 2018). However, not
many other researches cover this same scope.
Given that chopsticks are rich and a potential
source of cellulose, its applications and feasibil-
ity as a bio-based nanomaterial can simultane-
ously address these sustainability issues and
this research gap.

Among the different nanomaterials, one of
the most prominent is nanocellulose (Kaur et
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al,, 2021). Researchers have extracted nanocel-
lulose from various types of wood, including
hardwoods like spruce and birch (Kumar et al.,
2022; Raju et al,, 2023; Muraleedharan et al,,
2021) and processed woods like medium-den-
sity fiberboards (Couret et al., 2017). Some of
the products that were produced with this ex-
tracted cellulose include reinforcement mate-
rial, nanocarriers, films, and nanofibers. Waste-
wood sources like chopsticks were also ex-
plored by Suzuki et al (2018) but with minimal
application. Wood-derived nanocellulose is
popular as a reproducible biomass resource
from excess wood waste coming from housing,
furniture, and businesses (Isogai, 2013). The
produced product from wooden materials ex-
hibits great qualities, such as high crystallinity,
aspect ratio, Young's moduli, and tensile
strength (Kargarzadeh et al., 2018).

Analysis of Main Effects and Contributions

Main Contribution: PC
Addition (44.54%

* NC Addition (35.02%), Voltage (20.44%)

Optimum Parameters: 0.1 g/100 g. NC.
0.1g./100 g. PC, 25 kV voltage

Loading Capacity
~  Main Contribution: NC
Addition (57.99%)

PC Addition (25.39%), Voltage (16.62%}
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Optimum Parameters: 0.2 g/100 g. NC.
0.1 g./100 g. PC, 30 KV voltage

Characterization of PVA/WUNC/PC
Electrospun Fibers
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Seanning Electron Microscopy
(SEM)

Fourier-Transform Infrared (FTIR)
Spectroscopy

As a highly utilized bio-material, cellulose
has been previously processed using solution
casting into composite films (Xu et al., 2024)
and Layer-by-Layer Assembly (LBL) into filter
paper (Liao et al, 2024). Another emerging
manufacturing technique is electrospinning
into biomedical products (Ribeiro et al., 2021),
which has the advantage of having precise

control, more uniformity, and finer fibers com-
pared to the previous methods. Additionally, it
is cost-effective, versatile, and produces de-
sired properties such as mechanical flexibility
and high surface area (Gao et al.,, 2023). Elec-
trospinning is defined as a process driven by an
electro-hydrodynamic occurrence wherein a
polymer solution is electrified and sprayed
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through a syringe to form small fibers (Das et
al, 2021). Previous studies often utilized
electrospinning to produce nanocellulose
reinforcement compounds and fabrics for
sensors, displaying its flexible applications to
many fields (Choi et al,, 2021; Liao et al.,, 2011;
Zhangetal., 2021). Over time, it has become the
most frequent method for synthesizing
nanofibers, particularly in  biomedical
applications (Chen et al, 2022). Typically,
polymers such as poly(lactic acid), polyacrylo-
nitrile, polyvinylidene fluoride, and polyvinyl
alcohol (PVA) are added to further improve
mechanical strength and ability to be spun in fi-
bers (Patel et al., 2020; Xu et al., 2020; Wang et
al, 2019; Wang et al.,, 2018).

To enhance its biomedical potential, pig-
ments are often incorporated into fibers to im-
prove biocompatibility, wound-healing, and
other beneficial attributes. One study com-
bined red pigments isolated from marine Bac-
terium Vibrio sp. to induce wound repair
(Krishna et al., 2017). Another wound-healing
pigment is phycocyanin which has been seen to
have many beneficial effects to human skin,
particularly antibacterial and antioxidant prop-
erties (Dranseikiene et al, 2022). Dranseikiene
et al. (2022) further stated that phycocyanin
was found to also have anti-inflammatory, anti-
melanogenic, and anticancer properties. Addi-
tionally, Shanmugan et al (2017) observed the
antibacterial activity of the extracted Phycocy-
anin from Oscillatoria sp. collected from dam
water.

To assess the incorporation of additional
polymers and pigments into nanofibers, load-
ing efficiency and loading capacity are used to
determine the percentage or amount of drug
contained in the solution. Commonly used to
measure drug loading, loading capacity refers
to the amount of entrapped compound from
the initial loading amount added (Trushina et
al,, 2022). Optimizing the loading capacity min-
imizes the loss of active compounds used in the
product while maximizing the amount ab-
sorbed. In wound dressing applications, deter-
mining the loading capacity ensures that suffi-
cient amounts of the pigment protein are pre-
sent to bring proper wound healing effects. It is
an essential property to optimize as it directly
affects its efficacy and functionality.

Tensile strength testing is another common
method of verifying the successful effect of add-
ing polymers and checking the mechanical
properties of nanofibers and wound dressings
(Biilbiil et al., 2022). This characteristic is one
of the most important properties to be consid-
ered in assessing the effectiveness of these, as
wound dressings that possess good tensile
strength have the ability to withstand mechan-
ical stresses. Wound dressings are subjected to
frequent stress during movement, application,
and removal, and must remain intact, as tearing
can leave residue on wounds. High tensile
strength is ideal as it increases durability of the
dressings, allowing wounds to be properly pro-
tected. According to Bilbil et al. (2022), the
ideal tensile strength of wound dressings range
from 2.5 to 35 MPa.

Electrospun fibers generally exhibit weak
mechanical properties (Pauly et al., 2016). PVA
nanofibers with a lower degree of crystalliza-
tion result in reduced mechanical strength (Lee
et al., 2017). Previous studies have used cellu-
lose nanocrystals to improve the mechanical
properties of PVA electrospun fibers, including
the study of (Wang et al.,, 2018), which indi-
cated that increasing nanocellulose content in-
itially enhanced tensile strength. However, no
studies have tackled sourcing nanocellulose
from waste materials. Thus, the
PVA/WUNC/PC combination, particularly the
addition of nanocellulose derived from waste
wooden utensils, was employed to enhance the
mechanical properties of electrospun fibers.
Furthermore, this addition also aims to further
improve the loading capacity of phycocyanin in
PVA.

Previous studies have explored optimiza-
tion methods such as the one-factor-at-a-time
method (OFAT) and response surface method-
ology (RSM) to be utilized in electrospinning to
optimize the integration of substances and pa-
rameters settings (Bosiger et al., 2018; Meng et
al, 2015; Supaphol and Chuangchote 2008).
While both these methods are viable in optimi-
zation, one-factor experimentation does not ex-
amine the interaction between parameters and
is time-consuming (Zhang et al., 2021). On the
other hand, Kandala et al. (2022) reported the
Taguchi approach took 40% fewer runs than
RSM when applied with the same experimental
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design. The Taguchi method, a robust optimiza-

tion method, requires fewer trials to achieve

comparable results. Overall, Taguchi bears the
advantages of streamline effect screening and
inferring effects of factors with minimal runs.

Dr. Genichi Taguchi developed this optimi-
zation method to minimize the signal to noise
ratio, or uncontrollable variables, using a sys-
tematic & statistical experimental design (Kim
et al., 2004). By adjusting controlled variables
prior to experimentation, this method im-
proves testing quality and converts uncontrol-
lable variables into desired characteristics.
(Hamzagebi, 2020). This method drastically re-
duces the amount of tests required to get the
same results by utilizing orthogonal arrays (Li
etal.,, 2019).

Only a few studies focus on the recycling
and repurposing of waste wooden utensils, es-
pecially as a source of bio-based materials such
as nanocellulose. Additionally, the effects and
interactions of parameters that can affect the
loading capacity and tensile strength within
wound dressings are still unknown. This pre-
sent study aims to explore these gaps by ad-
dressing the following research objectives:

e  Extract nanocellulose from waste wooden
utensils with the use of alkali treatment,
bleaching, and acid hydrolysis

e Determine the yield on the produced nano-
cellulose and perform physicochemical
characterization using Fourier Transform
Infrared Spectroscopy (FTIR)

e Determine the contribution of wooden
utensil nanocellulose (WUNC) addition,
phycocyanin (PC) addition, and electro-
spinning voltage in the loading capacity
and tensile strength of PVA/WUNC/PC
electrospun fibers

e  Optimize the solution and electrospinning
parameters for the loading capacity and
tensile strength of the PVA/WUNC/PC
electrospun fibers using Taguchi optimiza-
tion approach

e Characterize the produced electrospun fi-
bers using FTIR and Scanning Electron Mi-
croscopy (SEM)

Scope and Limitations
This research only utilized chopsticks from
a single local restaurant and excluded samples

from different restaurants and types of chop-
sticks. Furthermore, this study only investi-
gated the feasibility of extracting cellulose from
chopsticks while not optimizing the yield. Dur-
ing optimization, only the factors electrospin-
ning voltage, nanocellulose addition, and phy-
cocyanin addition were considered but do not
explore other factors such as humidity, flow
rate, or nozzle diameter which could influence
fiber properties. While the research focuses on
mechanical and chemical properties, real-
world application testing such as biodegrada-
bility and cytotoxicity are beyond the scope of
the study.

Significance of the Study

This study aims to explore the viability of
chopsticks as a source for nanocellulose extrac-
tion and its further applications in the biomed-
ical field. The findings of this study will be val-
uable to researchers as an alternative source of
nanocellulose, a popular material for sustaina-
ble material synthesis and reinforcements.
Meanwhile, this study can also be significant for
the medical field and sustainability efforts as
the produced materials have wound-healing
capabilities and opens a new method of repur-
posing waste. While previous researchers have
studied the extraction of nanocellulose from
chopsticks, there is a gap in exploring its appli-
cation. By identifying the optimal parameters
for the production of fibers and integration of
beneficial substances, this study contributes to
the evolving efforts of sustainable transition-

ing.

Methods
Materials

Waste bamboo chopsticks were collected
from a local restaurant located in Santa Rosa,
Laguna. The waste chopsticks were disinfected
through a series of soaking in boiling water and
cleaning with dishwashing liquid. Waste bam-
boo chopsticks were dried using a Thermo Sci-
entific Lindberg/Blue rapid drying oven
(Thermo Fisher Scientificc Massachusetts,
United States), and pulverized using Panasonic
MX-AC210S mixer grinder (Panasonic Corpora-
tion, Osaka, Japan). The pulverized waste bam-
boo chopsticks were passed through a 60-mesh
screen for uniform particle distribution.
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Chemicals

Chemicals used in the extraction of
nanocellulose were sodium hydroxide pellets
(Loba Chemie Pvt. Ltd, Mumbai, India) for
delignification, sodium hypochlorite (Dalkem
Corporation, Quezon City, Philippines) for
bleaching, and concentrated sulfuric acid (].T.
Baker, New Jersey, United States) for acid hy-
drolysis. The polymers used for the electro-
spinning solutions were partially hydrolyzed
poly-vinyl alcohol BP-24 (Chang Chun Petro-
chemical Co. Ltd., Taipei, Taiwan) and phycocy-
anin (Xi'an Qinghekang Biotechnology Co.,
Shaanxi, China).

Equipment

The equipment used for the extraction of
nanocellulose were a hot plate with magnetic
stirrer (Torrey Pines Scientific Inc., California,
United States) and Scientz 18-N Freeze Dryer
(Ningbo Scientz Biotechnology Co. Ltd,
Zhejiang, China). Inovenso NS1 NanoSpinner
Electrospinning Device (Inovenso Ltd., Istan-
bul, Turkey) located in Philippine Nuclear Re-
search Institute (PNRI) was used for electro-
spinning. Characterization was done using the

Extraction and
Characterization of
Nanocellulose

Preparation of
PVA/WUNC/PC
Solutions

—

Electrospinning of
PVA/WUNC/PC

—

Taguchi Optimization
of Tensile Strength
and Loading Capacity

——

Characterization of
PVA/WUNC/PC
Electrospun Fibers

Shimadzu UV-1700 Spectrophotometer (Shi-
madzu Corporation, Kyoto, Japan) for
loading capacity, Shimadzu IRSpirit (Shimadzu
Corporation, Kyoto, Japan) for FTIR, Zwick
Roell Z0.5 Universal Testing Machine (Zwick
Roell Group, Ulm, Germany) for tensile
strength, and JEOL JSM 5310 Scanning Electron
Microscope (JEOL Ltd., Tokyo, Japan) located in
[-Nano Research Facility, Sta. Ana, Manila for
morphological analysis.

Experimental Phases

The phases of the experiment are shown in
Figure 1. The first phase involves the extraction
of wasted wooden utensil-derived nanocellu-
lose (WUNC), as well as its characterization.
The second phase includes the preparation of
the electrospinning solutions using the polyvi-
nyl alcohol (PVA), phycocyanin (PC), and the
extracted WUNC, while the third phase in-
volves the electrospinning of the solutions. The
fourth phase focuses on the optimization of the
tensile strength and loading capacity of the pro-
duced electrospun fibers. The fifth and final
phase includes the FTIR and SEM characteriza-
tion of the PVA/WUNC/PC fibers.

Figure 1. Experimental phases for the Taguchi optimization of electrospinning parameters of
PVA/WUNC/PC fibers.

Experimental Design

The experimental design followed in this
study is the Taguchi Optimization Design. The
design uses Taguchi optimization in multiple

electrospinning studies such as the L.16 orthog-
onal array design to optimize 5 factors like volt-
age and polymeric solution addition to reduce
experimentation runs from 1024 to 16 (Mo-

IJMABER

3049

Volume 6 | Number 6 | June | 2025



de Dios et al, 2025 / Multi-Objective Taguchi Optimization of Electrospinning Parameters for the Development of Poly-(vinyl alcohol)

hammadi et al. 2020). Most similar to the L9 or-
thogonal array, this Taguchi design combines
three factors (PC addition, NC addition,
electrospinning voltage) of three levels to
minimize the experimentation of the
inefficient full-factorial design: from 33 =27 ex-
periments to nine experiments (Abbas et al,
2018).

Described in Table 1 are the parameter val-
ues that will be referenced with the Taguchi op-
timization methods. Nanocellulose and phy-
cocyanin addition both have low values of 0.1
g./100 g., mid values of 0.2 g./100 g., and 0.3
g./100 g. On the other hand, spinning voltage
has a low value of 25 kV, mid value of 27.5 kV,
and high value of 30 kV.

Table 1. Parameter levels for the Taguchi robust optimization design of experiment

Parameters Low (-1) Mid (0) High (1)
NC Addition (g./100 g.) 0.1 0.2 0.3
PC Addition (g./100 g.) 0.1 0.2 0.3
Spinning Voltage (kV) 25 27.5 30

Table 2. Taguchi orthogonal array for the optimization of preparation parameters for maximum
loading capacity (mg. phycocyanin/g. fiber) and tensile strength (MPa)

Run NC Addition PC Addition Voltage Loading Capacity Tensile Strength
No. (g./100g.) (g./100g.) (kV) (mg/g) (MPa)
EF-1 -1 -1 -1 V11 y21
EF-2 -1 0 0 V12 y22
EF-3 -1 1 1 V13 V23
EF-4 0 -1 0 V14 V24
EF-5 0 0 1 V15 V25
EF-6 0 1 -1 V16 V26
EF-7 1 -1 1 V17 Y27
EF-8 1 0 -1 V18 V28
EF-9 1 1 0 V19 Y29

The preparation of PVA/WUNC/PC solu-
tions for electrospinning involved combining a
prepared PVA solution at with varying WUNC
addition, PC addition, and electrospinning volt-
age at 3 levels, Low (-1), Mid (0), and High (1)
as shown in Table 1. WUNC addition and PC ad-
dition are measured per 100 g of PVA added.
Other variables were kept controlled including
PVA concentration at 10%, PVA amountat 20 g,
and Electrospinning Flow Rate at 1 mL/h.

The combination of parameters in Table 2
will be used to determine the optimal depend-
ent values, loading capacity and tensile
strength. Furthermore, the values from Table 1
were used as inputs for the independent

variables or parameters. Taguchi’s orthogonal
array approach utilizes the combinations of
factors or parameters with different levels or
different values of the parameters to achieve
efficiency. This array reduces the time, costs,
errors made in the process, and improves the
understanding of the cause and effect relation-
ship between factors and the product

Extraction of Wooden Utensil-derived Nano-
cellulose (WUNC)

This method adapts methods from the
study of Couret et al. (2017) with few modifica-
tions. Pulverized chopsticks underwent alkali
treatment with 4% NaOH for 2 hours. Lignin
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acts as a binder for wood components, and its
removal is essential to isolate cellulose. This
process ensures total delignification of the
wood samples. Afterwards, the delignified
cellulose was neutralized and freeze-dried to
prepare for the following processes.

After the extraction of cellulose, the sam-
ples were bleached using 2.5% v/v sodium hy-
pochlorite (NaOCl) and then freeze-dried once
more. "The samples were then bleached twice
with NaOH and subjected to acid hydrolysis us-
ing 50% v/v sulfuric acid (H,SO,) at 50 °C for
two hours, following Suzuki et al. (2018) and
Singh et al. (2023)."

Characterization of Wooden Utensil-derived
Nanocellulose (WUNC)

As one of the steps of characterization, the
determination of percent yield assesses the ef-
ficiency of the extraction methods by compar-
ing the mass of the processed material from the
original material. This evaluation compares
previous extraction methods and viability of
the material to be scaled to commercial pur-
poses. Additionally, FTIR characterization
would be performed on the extracted material
to determine the different functional groups
present in the nanocellulose. This allows the
observation of changes in chemical structure
from chopsticks, to cellulose, to nanocellulose,
ensuring the complete removal of lignin and
hemicellulose.

Thermal behavior of the nanocellulose was
monitored in accordance with the protocol of
Velasquéz et al. (2022) and Huang et al. (2017).
DSC 25 differential scanning calorimeter (TA
Instruments, Delaware, United States) was

used to observe the thermal behavior of the
nanocellulose sample with mass of 5 mg. from
50°C to 500°C with a heating rate of 10°C/min.
The thermogram of the nanocellulose was used
to analyze the endothermic and exothermic
peaks signifying the initial melting stage and
crystallization stage.

Preparation of PVA/WUNC/PC Electrospin-
ning Solutions

A 10% w/w poly-(vinyl alcohol) (PVA) so-
lution was first prepared using 20 g. of PVA and
200 mL of distilled water. The distilled water
was heated, maintaining a temperature of
around 70-80 °C on a hotplate with a magnetic
stirrer. Stable temperature was maintained by
slowly stirring PVA granules until it had finally
dissolved. After cooling, the electrospinning so-
lutions were mixed with different concentra-
tions of nanocellulose and phycocyanin into
PVA solution, according to the generated
Taguchi design of the experiment.

Electrospinning of PVA/WUNC/PC Solution

The experiment setup of the electrospin-
ning device, processing the PVA/WUNC/PC
polymer solution into nanofibers is shown in
Figure 2. The electrospinning phase of this re-
search will be conducted in the Philippine Nu-
clear Research Institute (PNRI), using Inovenso
NS1 NanoSpinner Electrospinning Device. The
electrospinning setup was prepared by loading
the PVA/WUNC/PC solutions into the syringe
pump. The silicone tubing was connected to the
nozzle. Aluminum foil was placed on the collec-
tor plate for the collection of the electrospun fi-
bers.

Figure 2. Experimental setup of the electrospinning process of PVA/WUNC/PC electrospinning solu-

tions
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During the electrospinning process, by
adopting the methods of Ji et al. (2021), with
slight modification based on initial trials, the
following parameters will be varied: WUNC ad-
dition, spinning voltage, and PC addition fol-
lowing similar methods to the L9 Taguchi ar-
ray. The solutions were electrospun at 29.5 °C
for 1 hour and were placed in a dry box to to
eliminate moisture.

Determination of Loading Capacity

Loading capacity tests would be performed
to measure the amount of incorporated phy-
cocyanin (PC) into the electrospun fibers. The
concentration of phycocyanin in the electro-
spun fibers will be calculated using the formula
in Equation 1. Absorbance values at 615 nm
and 652 nm (Ag1s and Ags,) will be measured
using UV-Vis spectroscopy. This method fol-
lows Irmak (2020), who cited the original for-
mula from Bennett and Bogorad (1973), as
shown in Equation 1.

mgy _ Ag1s — 0.474 * Ags; (Eq. 1)
PC(—) =
C(mL) 5.34
Wherein:
PC is the concentration of phycocyanin in
mg/mL

Ae1s is the absorbance at 615 nm
Agso is the absorbance at 652 nm

The loading capacity will then be deter-
mined using Equation 2 below, following the
study of Khandual et al. (2021).

PC +V,
LC (@) e
g my

(Eq. 2)

Wherein:

LC is the loading capacity in mg./g.
V_s is volume of solution in mL

m_f is the mass electrospun fibersin g.

Determination of Tensile Strength

To test the mechanical properties of the
electrospun nanofibers, tensile strength was
tested using the Zwick Roell Universal Testing
Machine. The parameters for the testing are as
follows: 25 mm grip to grip separation at

starting point, 500 mm/min speed start posi-
tion, 0.1 N pre-load, 10 mm/min speed pre-
load, 12.5 mm/min position controlled test
speed, and a force shutdown threshold at 50 N.
This characterization is crucial to determine
the wearability and durability of the nano-
scaled fibers for future applications.

Determination of Signal-to-Noise (SN) Ratio

After obtaining the data from Taguchi opti-
mization methods, the signal-to-noise ratio was
calculated using Equation 3 to determine the
effect of each parameter in producing the opti-
mal electrospun fiber. Fraley et al., (2023) high-
lights the process of calculating the signal and
noise values to derive their ratio in their paper
and following formula. Specifically, this method
would be utilizing the larger-the-better SN to
maximize the response or output, which would
be loading capacity and tensile strength in this
study (Karazi et al., 2019).

7 (Eq. 3)
SN; = 10log <s_2>

Wherein:

SN_i is the signal-to-noise ratio
(y_i )2 is the signal power
s”2 is the noise power

The percent contribution formula shown in
Equation 4 was also used to determine the con-
tribution of each factor into the respective re-
sponse variable, which was then ranked in
comparison with the other parameters.

Sy (Eq-4)

% C. =
/"xzss

* 100%

Wherein:

%C_x is the percent contribution of parameter
X

SS_x is the sum of squares of parameter x

2SS is the summation of all sum of squares

Characterization of PVA/WUNC/PC Electro-
spun Fibers

Fourier-Transform Infrared Spectroscopy
(FTIR)
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FTIR was conducted to confirm successful
delignification and investigate the internal
structure  and  morphology of the
PVA/WUNC/PC fibers after these respective
objectives. Similar to methods by Singh et al.
(2023) and Sihag et al., (2022), the FTIR spec-
tra were recorded in the range of wave-
numbers 500-4000 cm-1 using the Shimadzu
IRSpirit infrared spectrometer. The FTIR spec-
trum of the individual materials would also be
recorded to review the interactions and verifi-
cation of integration into one solution.

Scanning Electron Microscopy (SEM)

To obtain clear images of the morphology,
such as beading and weaving, of the electro-
spun fibers, SEM was employed at three differ-
ent magnifications: 300%, 5000%, 30000x, using
the JEOL JSM 5310 Scanning Electron Micro-
scope. This imaging characterization follows
the examples of Chandra et al.,, (2016) in ac-
cordance with established protocols from re-
lated studies. GIFT macro on Image] was used
to create the fiber diameter distribution. The
parameters for the fiber diameter scanning are
as follows: 45 degrees of rotation, 8 line length,
100 bin size, 190px to 10000 nm (manually
measured from the scale on the 5000x zoom

SEM micrograph), and 1024 pixel crop. Per-
centage thresholds were manually to adjusted
to maximize the inclusion of measurable fibers.

Ethics Statement

Pursuant to the University’s Code of Re-
search Ethics and Guide to Responsible Con-
duct of Research, Operational Guidelines for
the Research Ethics Review Committee, and the
DLSU-IS SHS Research Manual, the researchers
created a Material Safety Data Sheet (MSDS) of
the chemicals involved in the study, used
proper personal protective equipment to en-
sure safety, performed proper handling and
storage of all equipment and chemicals in-
volved in the study, and reported all results of
the experiments with honesty, transparency,
and accurac

Results and Discussion
Extraction of Nanocellulose

Shown in Figure 3 are the steps for extrac-
tion: (a) pulverized chopsticks, (b) bleached
cellulose, (c) bleached nanocellulose. The ex-
traction process involved initial mechanical
pulverization of the chopsticks, followed by
delignification, acid hydrolysis, and bleaching,
resulting in the products shown in Figure 3.

Figure 3. Extraction process of nanocellulose from (a) pulverized wooden chopsticks (CHST), (b)
wooden utensil cellulose (WUC), and (c) wooden utensil nanocellulose (WUNC)

As shown in Figure 3, the appearance of the
pulverized chopsticks initially appeared brown
in color. After the delignification process, the
cellulose turned into a lighter shade, as lignin is
a significant contributor of color (Zhang et al,,
2020). Bleaching was repeatedly performed to
further lighten the cellulose. Subsequently, acid
hydrolysis was performed to extract nanocellu-
lose. This resulted in a darker coloration, as pa-

rameters including the temperature, acid con-
centration, and the duration of hydrolysis af-
fected the process. As reported by Lin et al.
(2019), high temperatures, strong acid concen-
trations, and extended hydrolysis durations
contribute to nanocellulose darkening.

%Y, =« 100% (Eq. 5)

ms
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Wherein:

%Y_n is the percent yield of nanocellulose

m_n is the mass of nanocellulose produced
m_s is the mass of initial sample (ground chop-
sticks)

The mass changes after each processing
step is outlined in Table 3. The mass changes

after each processing step is outlined in Table
3. After delignification, bleaching, and acid
hydrolysis, 20.00 * 0.00 g of pulverized
chopsticks achieved 3.53 + 0.84 g of nanocellu-
lose, resulting in a percent yield of 17.65 #
4.2%.

Table 3. Mass of wooden utensil and its weight post-delignification, post-bleaching, and post-hydrol-

Ysis

Extraction Stage Bone Dry Mass (g.)

Mass Loss (g.) Percent Mass Loss (%)

Wooden Utensil 20.00 + 0.00 - -

Post-Delignification 14.68 £ 1.96 5.32+£1.96 26.60 £ 9.80
Post-Bleaching 6.80 £ 1.42 7.88 £ 0.56 53.98 +3.75
Post-Hydrolysis 3.53+0.84 3.27 £ 0.64 48.21 + 3.04

After delignification, the percent yield was
calculated using Equation 5 (Vishnoi et al,,
2023). The 26.60 * 9.80% mass was loss during
the conversion due to the removal of lignin,
hemicellulose, and other impurities. After the
bleaching process, the mass was significantly
reduced by 53.98 = 3.75%, as this also removes
non-cellulosic components and causes severe
oxidation when higher concentrations of
bleach is used (Wang & Zhao, 2020). Further-
more, the mass loss of 48.21 + 3.04% post-hy-
drolysis is due to the breakdown of amorphous
regions in the cellulose, and the formation of
nanocellulose from crystalline regions.

Characterization of Extracted Nanocellulose

FTIR spectroscopy is crucial in analyzing
the extracted nanocellulose by monitoring the
chemical composition and present functional
groups. For chemical composition analysis, it
confirms the removal of non-cellulosic material
therefore validating the methods of this study
(Wahib et al., 2022). This was achieved by ana-
lyzing the presence or absence of specific

peaks, which correspond to distinct functional
groups. Additionally, FTIR analysis helps en-
sure that no chemical defects or unwanted res-
idues were introduced during the extraction
process.

Summarized in Table 4 are the findings
taken from the FTIR spectrum. Specifically, it
lists down the functional groups that were ob-
served along with its respective wavenumber.

Fourier Transform Infrared Spectroscopy
(FTIR) analysis identified the different func-
tional groups present in nanocellulose
(WUNC), cellulose (WUC), and -chopsticks
(CHST), as shown in Figure 4. The FTIR spectra
of WUNC, WUC, and CHST showed peaks at
3375 cm-1 which correspond to O-H stretching,
indicating the presence of hydroxyl groups
(Sihag et al., 2022; Singh et al., 2023; Sulaiman
etal, 2011; Wulandari et al., 2016). The peaks
for WUNC and WUC at 2875 cm-1and 1125 cm-
1 correspond to C-H stretching (Chieng et al,,
2017; Wulandari et al, 2016) and C-0-C
stretching (Zarina & Ahmad, 2014; Wulandari
et al., 2016), respectively.

(@) WUNC

(b) WG T
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Figure 4. Fourier-transform infrared (FTIR) spectra of (a) wooden utensil nanocellulose (WUNC),
(b) wooden utensil cellulose (WUC), and (c) wooden chopsticks (CHST)
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Table 4. Wavenumbers and corresponding functional groups of chopsticks, cellulose, and nanocellu-

lose
Substance Wavenumber (cm™)  Functional Group
Nanocellulose 3375 O-H stretch (Sihag et al., 2022; Singh et al., 2023)
(WUNC) 2875 C-H stretch (Chieng et al., 2017)
1125 C-O-C stretch (Zarina & Ahmad, 2014)
Cellulose (WUC) 3375 O-H stretch (Wulandari et al., 2016)
2875 C-H stretch (Wulandari et al., 2016)
1125 C-0O-C stretch (Wulandari et al., 2016)
Chopsticks (CHST) 3375 O-H stretch (Sulaiman et al., 2011)
2875 CHj stretch (Sulaiman et al., 2011)
1710 C=0 stretch (Jelle et al., 2012)
1500 C=C stretch (Jelle et al., 2012)

The thermal behavior of nanocellulose is key
to understanding the crystalline behavior of the
nanocellulose extracted from wooden utensils.
Aside from the spectral analysis, thermal behavior
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was also observed using differential scanning
calorimetry. The DSC curve of the extracted
nanocellulose is shown in Figure 5.
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Figure 5. Differential scanning calorimetry (DSC) curve of wooden utensil nanocellulose (WUNC)

In Figure 5, the evolution of bound moisture
happens within the range of 50°C - 132.81°C,
where residual moisture is removed from the
nanocellulose matrix (Charoensopa et al., 2024).
The nanocellulose matrix exhibits a high surface
area with hydroxyl (-OH) groups, as shown in the
FTIR spectra in Figure 4, which facilitates the re-
tention of moisture on the nanocellulose surface
(Kondor et al., 2021). The presence of amorphous
regions in the nanocellulose was observed in the
endothermic peak at 148°C, indicating presence of
hemicellulosic components in the nanocellulose
sample (Charoensopa et al., 2024). Moreover, the
onset of thermal degradation is observed at around
248.77°C, indicating the cleavage of glycosidic
bonds in cellulose. Huang et al. (2017) reported an
instance of onset decrease by 80°C in the thermal

degradation of nanocellulose due to the replace-
ment of hydroxyl groups with sulfated groups dur-
ing sulfuric acid hydrolysis, with an initial
degradation onset at 348.45°C for unhydrolyzed
cellulose. However, a similar endothermic peak
was also observed in this study, indicating that
there is residual unhydrolyzed cellulose still pre-
sent in the nanocellulose sample. In summary, the
study has successfully produced nanocellulose,
but further characterization of crystallinity is im-
portant to further optimize the production of cellu-
lose nanocrystals.

.Wound dressings must be able to sustain their
shape and form when exposed to constant body
heat and even in situations where body tempera-
ture rises, such as fever. Normal body temperature
ranges from 36.1°C - 37.2°C, rising up to 41°C if
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experiencing fever (Gefen, 2021). As shown in
Figure 5, losses of moisture only occur in ranges
far beyond the expected body temperature, indi-
cating that the produced fibers would serve well as
a wound dressing.

Electrospinning of PVA/WUNC/PC Solution
Mix

During the electrospinning process, the fibers
were formed due to the coulombic differences of

the nozzle and collector plate (Haider et al., 2018).
Electrospun fibers are formed as the solvent evap-
orates that creates a steady stream of fiber deposi-
tion at the collector plate (Garcia et al., 2022).
Representative areas of the nine electrospun
PVA/WUNC/PC fibers with variations being at-
tributed to the differences in parameters are col-
laged in Figure 6.

H -

®

-
’ ﬁ ﬁ

Figure 6. Electrospun fibers produced using Taguchi design of experiment

While some runs such as EF-1 and EF-8 ex-
hibited uniform surface morphology, the other
runs displayed varying smoothness and irregu-
larities such as wrinkles and dispersions. EF-3,
EF-5, and EF-6 strongly display wrinkling,
which may be due to buckling instability during
electrospinning (Pai et al., 2009). EF-3, EF-4,
AND EF-7 have particularly distinct particle
dispersions, as simple blending electrospin-
ning may cause uneven distribution of drugs in
fibers (Sun et al,, 2019). The fibers also have a

Table 5. Loading capacity of PVA/WUNC/PC fibers

range of colors spanning from white-gray to
light blue due to the different amounts of PC ad-
dition similar to the slight blue-green PC/chlo-
rophyll nanofibers produced by Martin et al.
(2023).

Loading Capacity

The results of loading capacity optimization
given the following combination of parameters
in each run are shown in Table 5.

Run Nanocellu- PCaddition Voltage Loading Capacity, Confidence In-
No. lose Addition (g./100g.) (kV) Mean + SD (mg/g) terval (a=0.05)
(g./100g.)

EF-1 0.1 0.1 25 35.89 +3.43 (32.01, 39.78)

EF-2 0.1 0.2 27.5 439+1.11 (3.13,5.64)

EF-3 0.1 0.3 30 63.83 +46.77 (10.9, 116.75)

EF-4 0.2 0.1 27.5 2.68 +2.07 (0.33,5.02)

EF-5 0.2 0.2 30 23.85+10.08 (12.44, 35.26)

EF-6 0.2 0.3 25 75.44 + 46.73 (22.56,128.32)
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Run Nanocellu- PCaddition Voltage Loading Capacity, Confidence In-

No. lose Addition (g./100g.) (kV) Mean + SD (mg/g) terval (a=0.05)
(g./100 g)

EF-7 0.3 0.1 30 13.44 +2.21 (10.94, 15.95)

EF-8 0.3 0.2 25 27.47 £ 13.09 (12.66,42.28)

EF-9 0.3 0.3 27.5 35.04 + 20.92 (11.37,58.72)

As revealed in Table 5, there is significant
loading capacity with the highest being 75.44
mg/g, resulting from parameters of WUNC
addition of 0.2 g./100 g.,, PC addition of 0.3
g./100 g, and voltage of 25 kV. In contrast, the
lowest capacity of 2.68mg/g had parameters of
WUNC addition of 0.2 g./100 g., PC addition of
0.1 g./100 g., and voltage of 27.5 kV. These re-
sults align with the findings of Luraghi et al.
(2021), which stated the optimal electrospin-
ning voltage was between 15-25 kV to ensure
uniform fiber formation and therefore more fa-
vorable surfaces for loading. Higher voltages
(>25 kV) can lead to thinner fibers, which may
improve drug dispersion but also risk drug loss
due to jet instability. These results also fol-
lowed the pattern of higher additive substance

concentrations resulting in better loading. In
the same study, Luraghi et al. (2021) stated that
higher polymer concentration increases viscos-
ity, which improves drug entrapment or load-
ing within the fiber matrix.

The calculations to get the loading capacity
signal-to-noise ratio for each run are displayed
in Table 6. To solve for the SN ratio, you would
divide the found signal value by the noise value
according to the formula by Fraylet et al
(2023).

The calculated Signal-to-Noise ratios for
swelling capacity per parameter and parame-
ter level are shown in Table 7. Below these cal-
culated values are the mean Signal-to-Noise ra-
tio, as well as its rank in contribution and its
percent contribution.

Table 6. Loading capacity signal-to-noise ratio calculations

RunNo. Loading Capacity Mean (mg/g) Signal (yi*) Noise (si?) Signal-to-Noise Ratio
EF-1 35.89 1288.41 11.77 20.39
EF-2 4.39 19.24 1.00 11.93
EF-3 63.83 4073.70 2187.42 2.70
EF-4 2.68 7.16 4.30 2.21
EF-5 23.85 568.99 101.67 7.48
EF-6 75.44 5691.51 2183.83 4.16
EF-7 13.44 180.67 4.90 15.67
EF-8 27.47 754.69 171.27 6.44
EF-9 35.04 1228.13 437.61 4.48
Table 7. Loading capacity Taguchi optimization signal-to-noise results
NC Addition PC Addition Voltage

Parameter Level (g./100g.) (9./100g.) (kV)

1 11.68 12.76 10.33

2 4.62 8.62 6.21

3 8.86 3.78 8.62
Signal to Noise 7.06 8.98 4.12

Rank 2 1 3
% Contribution 35.02% 44.54% 20.44%

Shown in Figure 7 is the main effects plot
for loading capacity. It can be inferred from the

graph that PC addition has the highest contri-
bution to the loading capacity of the
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electrospun fibers, as indicated by the steep
slopes across its level. An inverse relationship
between PC addition and loading capacity was
also observed. The second most significant ef-
fect on loading capacity is NC addition, as evi-
denced by the steep and varied slopes across its
levels. However, there is no linear relationship
between NC addition and loading capacity.

Voltage had the least significant effect, as indi-
cated by the relatively flat slope in its plot. Sim-
ilar to NC addition, there is no linear relation-
ship between voltage and loading capacity. The
best combination of parameters for the highest
signal-to-noise ratio is 0.1 g./100 g. NC addi-
tion, 0.1 g./100 g. PC addition, and 25 kV volt-
age.
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Figure 7. Main effects plot for loading capacity

Using the formula presented in Equation 3,
the analysis of Taguchi's robust optimization
methods revealed the parameters that most
contributed to the optimal results of loading ca-
pacity. Phycocyanin (PC) addition exhibited the
highest signal-to-noise (S/N) ratio at 8.98,
making it the most influential parameter, fol-
lowed by WUNC addition, then electrospinning
voltage. Voltage had the least effect, with an
S/N ratio of 4.12. These findings are consistent

Table 8. Tensile strength of PVA/WUNC/PC fibers

with Luraghi et al. (2021) who reported that
voltage had a moderate influence on the drug
loading and polymer or additive substance con-
centration had a high influence.

Tensile Strength

The results of tensile strength optimization
given the following combination of parameters
in each run is shown in Table 8.

Run Nanocellulose Ad- PCaddition Voltage Tensile Strength Confidence In-
No. dition (g./100 g.) (g./100g.) (kV) Mean (MPa) + terval («=0.05)
SD (mg/g)
EF-1 0.1 0.1 25 2.63 +£0.25 (2.34,2.92)
EF-2 0.1 0.2 27.5 2.61 +0.85 (1.64,3.57)
EF-3 0.1 0.3 30 2.52+0.94 (1.46, 3.58)
EF-4 0.2 0.1 27.5 6.03+0.42 (5.55, 6.5)
EF-5 0.2 0.2 30 5.02 £0.12 (4.89, 5.16)
EF-6 0.2 0.3 25 3.97 £0.35 (3.57,4.37)
EF-7 0.3 0.1 30 6.24 +1.02 (5.09,7.4)
EF-8 0.3 0.2 25 5.30+1.39 (3.72, 6.88)
EF-9 0.3 0.3 27.5 5.09 +1.14 (3.81, 6.38)
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The mean tensile strength of the different
samples of electrospun fibers can be found in
Table 8. The highest recorded tensile strength
result was 6.24 MPa, followed by 6.03 MPa, and
5.30 MPa. The values in the middle range were
5.09 MPa, 5.02 MPa, and 3.97 MPa. The lowest
values were 2.63 MPa, 2.61 MPa, and 2.52 MPa.
The trial with the highest tensile strength had
the following parameters: WUNC addition of
0.3 g./100 g., PC addition of 0.1 g./100 g., and
voltage of 30 kV. The trial with the lowest ten-
sile strength, on the other hand, had the follow-
ing parameters: WUNC addition of 0.1 g./100 g.,
PC addition of 0.3 g./100 g., and voltage of 30
kV. Across multiple trials, tensile strength
tended to increase alongside the incorporation
of nanocellulose, with the 3 runs containing 0.1

g./100 g. WUNC addition having the lowest
among the 9 runs. This observation aligns with
Paulett et al. (2017), who reported that, which
states that increasing the concentration of
nanocellulose strengthens the electrospun fi-
bers. However, going over a specific threshold
leads to a decrease in tensile strength.

Displayed in Table 9 are the calculations to
get the tensile strength signal-to-noise ratio for
eachrun. The S/N ratio was calculated by divid-
ing the signal by the noise, following the for-
mula by Fraylet et al. (2023). The calculated
Signal-to-Noise ratios for Tensile strength per
parameter and parameter level are shown in
Table 10. Below these calculated values are the
mean Signal-to-Noise ratio, as well as its rank
in contribution and its percent contribution.

Table 9. Tensile strength signal-to-noise ratio calculations

Run No. Tensile Strength Mean (MPa) Signal (yi*) Noise (si*)  Signal-to-Noise Ratio
EF-1 2.63 6.92 0.06 20.36
EF-2 2.61 6.79 0.73 9.68
EF-3 2.52 6.37 0.88 8.60
EF-4 6.03 36.32 0.18 23.14
EF-5 5.02 25.23 0.01 32.37
EF-6 3.97 15.79 0.13 21.01
EF-7 6.24 38.98 1.04 15.73
EF-8 5.30 28.09 1.94 11.61
EF-9 5.09 25.94 1.30 13.02

Table 10. Tensile strength Taguchi optimization signal-to-noise results

Parameter Level NC Addition PC Addition Voltage
(2./100 g2.) (2./100 g.) (kV)

1 12.88 19.74 17.66

2 25.51 17.89 15.28

3 13.45 14.21 18.90
Signal to Noise 12.63 5.53 3.62
Rank 1 2 3
% Contribution 57.99% 25.39% 16.62%

Shown in Figure 8 is the main effects plot
for tensile strength. The variable with the most
significant effect on tensile strength is NC addi-
tion, as indicated by the steep slopes across lev-
els. However, no linear relationship could be
observed. The variable with the second most
significant effect is PC addition. A negative cor-
relation was observed between the addition of
PC and tensile strength. The variable with the

least significant effect is voltage. Like NC addi-
tion, voltage exhibited a non-linear effect with
tensile strength. The best combination of pa-
rameters for the highest signal-to-noise ratio is
0.2 g.,/100 g. NC addition, 0.1 g./100 g. PC addi-
tion, and 30 kV voltage.

The signal-to-noise (S/N) ratio formula was
applied to assess the contribution of the three
parameters on the tensile strength of the
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electrospun fibers. The signal-to-noise ratio of
the different parameters are shown in Table 10.
The most significant factor was the WUNC ad-
dition, with a signal-to-noise ratio of 12.63.
This further supports the role of nanocellulose
integration as a key factor in increasing tensile
strength of electrospun fibers (Leones et al,
2021). This was followed by PC addition, with
a signal-to-noise ratio of 5.53. The factor with
the least significant effect on tensile strength
was voltage, with a signal-to-noise ratio of 3.62.
These results align with the study of
Hajieghrary et al. (2024) which states that cel-
lulose nanofibers play a significant role in af-
fecting the tensile strength of electrospun ma-
terials. O’Connor et al. (2021) reported that ap-
plied voltage does not significantly affect the
mechanical properties of electrospun fibers.

Morphological Characterization of
PVA/WUNC/PC Electrospun Fibers
FTIR Characterization of PVA/WUNC/PC
Electrospun Fibers

FTIR analysis was conducted to identify the
different functional groups present in poly-vi-
nyl alcohol (PVA), phycocyanin (PC), wooden
utensil nanocellulose (WUNC), and electrospun
fiber sample (PVA/WUNC/PC), as shown in
Figure 9. The summary of key wavenumbers
taken from the PVA/WUNC/PC Solution FTIR
spectrum is shown in Table 11. Common func-
tional groups identified in the spectra of the
components were highlighted and the interac-
tions on these wavenumbers were also dis-
cussed.
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Figure 8. Main effects plot for tensile strength
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Figure 9. FTIR spectra of (a) PVA/WUNC/PC electrospun fibers, (b) phycocyanin (PC), (c) wooden
utensil nanocellulose (WUNC), and (d) poly-(vinyl alcohol) (PVA)
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Table 11. Wavenumbers and corresponding functional groups of PVA/WUNC/PC solution and com-

ponents

Substance Wavenumber (cm-1) Functional Group

PVA/WUNC/PC 3375 0-H stretch (Kharazmi et al., 2015)
2900 CH; asymmetric stretch (Kharazmi et al., 2015)
1700 C=0 carbonyl stretch (Kharazmi et al., 2015)
1250 C-H bend (Kharazmi et al., 2015)

PC 3375 0-H and N-H stretch (Zhang et al., 2017)
1650 C=0 stretch (Buliga et al., 2024)
1550 N-H bend (Buliga et al., 2024)

WUNC 3375 0-H stretch (Sihag et al., 2022; Singh et al., 2023)
2875 C-H stretch (Chieng et al., 2017)
1125 C-0-C stretch (Zarina & Ahmad, 2014)

PVA 3375 0-H stretch (Kharazmi et al., 2015)
2900 CH; asymmetric stretch (Kharazmi et al., 2015)
1700 C=0 carbonyl stretch (Kharazmi et al., 2015)
1250 C-H bend (Kharazmi et al., 2015)

All samples showed broad peaks at 3375
cm-1 which corresponds to O-H stretching and
indicates the presence of hydroxyl groups
(Kharazmi et al.,, 2015; Sihag et al.,, 2022; Singh
et al., 2023; Zhang et al., 2017). The peaks for
PCat 1650 cm-1 and 1550 cm-1 correspond to
the C=0 stretching of Amide I and N-H bending
of Amide II bands, respectively (Buliga et al.,
2024) which were not seen in the
(PVA/WUNC/PC) solution due to the low
amount of PC and weakening of the amide
bands. The peak seen at around 2875 cm-1 and
1125 cm-1 in WUNC is assigned to C-H stretch-
ing (Chieng et al., 2017) and C-0-C stretching of
cellulose and hemicelluloses (Zarina & Ahmad,
2014), respectively. The peaks for PVA at
around 2900 cm-1, 1700 cm-1, 1250 cm-1, and

300 x

- .
EF-S - | :
EF-7 .

5000

1000 cm-1 correspond to CH2 asymmetric
stretch, C=0 carbonyl stretch, C-H bend, and C-
O stretch, respectively (Kharazmi et al.,, 2015).
The similarity of the IR spectra of PVA and
(PVA/WUNC/PC) could be attributed to the
high concentration of PVA in the solution.

SEM Characterization of PVA/WUNC/PC Elec-
trospun Fibers

Scanning Electron Microscopy (SEM) was
performed to analyze the morphology of three
samples of electrospun fibers, EF-3, EF-5, and
EF-7, as well as its relation to their mechanical
properties. Additionally, the distribution of fi-
ber diameter was identified to further under-
stand the morphological characteristics of the
fibers.

X

Figure 10. SEM imaging of electrospun fibers produced using 0.1 g/1 00 g. NC addition, 0.3 g./100 g.

PC addition, and 30 kV voltage (EF-3);

0.29./100 g. NC addition, 0.2 g./100 g. PC addition,

and 30 kV voltage (EF-5); and 0.3 g./100 g. NC addition, 0.1 g./100 g. PC addition, and 30
kVvoltage (EF-7) at 300x, 5000x, and 30000x magnification
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The micrographs confirm the successful
formation of fibers from the electrospinning fi-
bers. Beading from the electrospinning poly-
mer can be seen especially in EF-5 and EF-7 in-
dicating imperfections from the electrospin-
ning process. Histograms fitted with Gaussian
curves for the fiber diameter distribution also
revealed the mean and standard deviation of
the fibers. The fiber diameter distribution was
collected from the 5000x magnifications of the
3 electrospun fibers. Manually set percent pixel
thresholds for the GIFT macro Image] fiber dis-
tribution are 20, 30, and 19, respectively. The
mean * standard deviation for EF-3, EF-5, EF-7
was revealed to be 589.61 + 229.80 nm, 430.01
+ 326.73 nm, and 521.05 * 444.98 nm, respec-
tively. This confirms the successful spinning of
fibers into the nano range of 1-1000 nanome-
ters (Valizadeh & Mussa Farkhani, 2014).

The images reveal highly porous structures
for EF-7 and EF-5, while EF-3 shows less poros-
ity. In a previous study by Jiyas et al. (2023),
lower porosity of fibers resulted in higher ten-
sile strength. However, the opposite could be
observed for EF-7, EF-5, and EF-3, which were
revealed to have tensile strengths of 6.24 + 1.02
MPa, 5.02 + 0.12 MPa, and 2.52 * 0.94 MPa, re-
spectively. This could be due to the diameter
distribution of the fibers which are shown in
Figure 10. EF-7 was revealed to have the most
even distribution, followed by EF-5, and EF-3.
Loading capacities of EF-7, EF-5, and EF-3 cor-
respond to 13.44 * 2.21 mg/g, 23.85 + 10.08
mg/g, and 63.83 * 46.77 mg/g, respectively.
This could be due to the beading seen in EF-7
and EF-5. Meanwhile, EF-3 was seen to have the
smoothest fiber structure, leading to higher
loading capacity.The produced electrospun fi-
bers show that phycocyanin was successful as
an additional component in electrospinning as
an antioxidative agent without disruption to
the morphological characteristics of the fibers,
as compared to the work of Gul and Cano
(2021), which utilized PVA/NC electrospun fi-
bers and had similar SEM results

Conclusions

This study demonstrated the feasibility of
extracting nanocellulose from waste wooden
utensils, specifically from discarded chopsticks,
establishing them as a viable source. FTIR

analysis identified functional groups present in
the different samples. These results confirm
successful and clean extraction of the nanocel-
lulose from the waste wood and the effect of the
different polymer components onto the elec-
trospun fiber. The prepared PVA/WUNC/PC
solution also exhibited successful electrospin-
nability through the production of nanofibers.
FTIR also indicated potential viability in bio-
medical applications due to enhanced mechan-
ical properties with biomedical properties due
to the addition of phycocyanin. The tensile
strength of electrospun fibers increased with
nanocellulose incorporation, reaching a maxi-
mum of 6.24 MPa and the lowest strength of
2.52 MPa. Signal-to-noise calculations also
ranked the influence of the electrospinning pa-
rameters to loading capacity to PC addition,
WUNC addition, and then voltage from most to
least significant. SEM micrographs confirmed
the successful formation of nanofibers from the
electrospinning process, while mean fiber di-
ameters of 589.61 nm, 430.01 nm, and 521.05
nm validated their nanoscale dimensions. The
addition of phycocyanin into the electrospin-
ning process was successful and did not have
any negative morphological impacts on the
electrospun fibers. The results also open up
room for optimization of other parameters rel-
evant for wound dressing production which
would improve the viability of the product as a
wound dressing. Future work is recommended
to include swelling ratio tests, which reflects
the fiber’s ability to manage wound exudate, cy-
totoxicity tests, which ensures the material is
non-toxic to human cells, and antioxidant tests,
which evaluates the antioxidant activity of the
fibers. Furthermore, this also prompts future
research to synthesize and test a commercially
applicable wound dressing made from this
study’s produced PVA/WUNC/PC nanofibers.
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