Main Article Content


The study aims to determine the response of sugarcane setts to the different level of concentrations bio-stimulant solutions (BSS) that can accelerate the rooting and tillering.  The study was conducted at UNO-R School of Agriculture, Philippines from October 15, 2023 -January 15, 2024. Phil 99-1793 variety is used. It was laid out in Completely Randomized Design with 4 treatments, replicated 4 times. The treatments were; no BSS (control), 200ml, 300ml, and 400ml BSS. Cane setts were prepared a day before planting. Leaf sheaths were remove and viable eye buds was selected. Setts were soaked in water for 24 hours and air-dried for 30 minutes before planting. The BSS were diluted in water before application. It was applied at plant base 15, 45, and 75 days after planting (DAP). Statistical analysis revealed highly significant on root weight and length with 110grams and 100.33cm for 400ml BSS, respectively. Great significant result also was observe for the tiller height at 30DAP and 60DAP with 26.10cm and 43.08cm respectively for 400ml BSS treatment. On tiller weight at 90DAP, number of tillers at 30DAP and number nodes at 90DAP statistics indicates a significant result with 752grams, 1.75tillers and 8.10nodes for 400ml BSS treatment. Application of 400ml BSS shorten the germination to only 5.30days while control treatment germinated at 8.03days. Application of 400ml BSS also increases the biomass with 4,310,00kg/hectare higher than the control with 2,242.50 kg/hectare. The study recommends the application of 400ml of BSS to accelerate the rooting and tillering of sugarcane setts up to 90DAP.

Article Details

How to Cite
Oñal, Jr., P. A., Andrade, F. E., Jayme, G. R., & Montorio, J. E. O. (2024). Response of Sugarcane Setts to Bio-Stimulant Solutions at Tillering Stage. International Journal of Multidisciplinary: Applied Business and Education Research, 5(5), 1776-1789.


Adjei, M. O., Xiang, Y., He, Y., Zhou, X., Mao, M., Liu, J., Hu, H., Luo, J., Zhang, H., Feng, L., Yang, W., Li, X., & Ma, J. (2021) Adventi-tious root primordia formation and de-velopment in the stem of Ananas como-sus var. Bracteatus slip. Plant Signaling & Behavior, 16(11).
Agricultural Research for Development (2023) Sugarcane Roadmap Summary: The road to sustainable sugarcane growing (2023-2033). https://www.cirad.
Bergmans, B., De Clercq, P., Ciesielska, D., & Bardgett, R. D. (2018) Biochar amend-ment alters the structure and function of the soil microbial community under cop-per stress. Journal of Environmental Management, 210, pp. 255-264.
Buyer, J. S., & Munakata-Lorenz, S. L. (2019) Microbial control of crop pathogens and pests: Back to the basics. An article that discusses the Niche Competition Theory among other biological control mecha-nisms. Microorganisms, 7(8), 240.
Calvo, P., Nelson, L., & Kloepper, J. W. (2014) Agricultural uses of plant bio-stimulants. Plant and Soil, 383(1-2), 3-41. doi:10.1007/s11104-014-2131-8.
Canali, S., Trinchera, A., Intrigliolo, F., Pompili, L., & Nardi, S. (2020) Bio-stimulants and crop responses: A review. Biological Ag-riculture & Horticulture, 36(2), 1-22. doi:10.1080/01448765.2019.1654655.
Cina, P., Pulia, A., & Alibrandi, P. (2022) Plant growth-promoting bacteria isolated from sugarcane improve. Italian Journal of Agronomy. DOI: 10.481/ija.2022.2006.
Da Silva, V.S.G., De Oliveira, M.W., Pererira, M.G., Oliveira, T.B.A., De Nogueira, C.H., Brito, F.S., and Franco Jr., C.L. (2018). Nu-trient contents in sugarcane biomass in the first regrowth cycle. Journal of Agri-cultural Science, 10(3).
Du Jardin, P. (2015) Plant bio-stimulants: Def-inition, function, and application. Agron-omy, 5(4), 499-514. doi:10.1016/j.agronomy.2015.07.009.
Egamberdisva, D., Da Silva, W. L., and Kurban-Abdi, O. (2017) Plant salt stress toler-ance: Methods and mechanisms for its as-sessment and improvement. Plant Physi-ology and Biochemistry, 116, pp. 100-110.
Fertilizer and Pesticide Authority (2019) Ferti-lizer Regulatory Policies and Implement-ing Guidelines (2nd edition). ISBN: 978-621-96675-3-1 (PDF). Quezon City, Phil-ippines. p. 6. Retrieved November 27, 2023.
Gallego, A. (2024) What Are Plant Growth Regulators - A Detailed Introduction to PGRs. Gold Biotechnology (U.S. Registra-tion No 3,257,927) and Goldbio (U.S. Reg-istration No 3,257,926) are registered trademarks of Gold Biotechnology, Inc.
Gomez-Kosky, R., Jaramillo, D. N., Esquero, C. R., Villegas, A. B., Calimano, M. B., Armas, P. M., Ferreiro, J. A., Pineda, E., Kukurtcu, B., & Dniels, D. D., (2019) Effect of VI-USID Agro and FitoMas-E on the Ex-Vitro acclimatization of sugarcane plants (Sac-charum spp.) cultivar C90-469. Sugar Tech.
Hardev S. Sandhu, M.P. Singh, R.A. Gilbert, & D.C. Ordeo (2019) Sugarcane Botany: A Brief View. SS-AGR-234, one of a series of the agronomy department, UF/IFAS Ex-tension. Original publication date August 1993. Revised May 2006 and February 2016. Reviewed July 2019.
Hasnain, A., Naqvi, S. A., Ayesha, S. I., Khalid, F., Ellahi, M., Iqbal, S., Hassan, M. Z., Ab-bas, A., Adamski, R., Markowska, D., Baazeem, A., Mustafa, G., Moustafa, M., Hasan, M. E., & Abdelhamid, M. M. (2022) Plants in vitro propagation and its appli-cation in food, pharmaceuticals and cos-metic industries; current scenario and fu-ture approaches. Frontiers in Plant Sci-ence, 13, 1009395.
Kebrom, T. H. (2017) A growing Stem Inhibi-tion Bud Outhgrowth- The Overlooked Theory of Apical Dominance. Frontiers in Plants Science, 8, 309506.
Khonghintaisong, J., Songsri, P., & Jon-grungklang, N. (2020) Root characteris-tics of individual tillers and relationship with above-ground growth and dry mat-ter accumulation of sugarcane. Pakistan Journal of Botany. DOI: 10.30848/PJB2020-1(35).
Kumalaw, Z., Kafrawi, S., Mulyani, S., Nur, I., Bestari, R., & Amin, A. R. (2021) Effect of sucrosin bio-stimulant on early growth of sugarcane (Saccharum officinarum L.) var. CM 2012. IOP Conference Series Earth Environvironmental Science. Sci. 807 (04)042019. DOI: 10.1088/1755-1315/807/4/042019.
Lana, R. M. Q., Domingues, L. A. S., & Torres, J. L. R. (2017) Soil physical attributes and productivity of sugarcane under different cropping systems in the savannah going. African Journal of Crop Science, 11(2), 149-155. doi:10.21475/ajcs.17.11.02. p 182.
Lehninger, A. L., Nelson, D. L., & Cox, M. M. (2017) Lehninger Principles of Biochem-istry. W.H. Freeman and Company.
Lovera, L. H., Sauza, Z. M., Aguillera- Esteban, D. A., Oliveira, I. N., Farhate, CV. V., Lima, E. S., & Panosso, A. R. (2021) Sugarcane root system: Variation over three cycles under different soil tillage systems and cover crops. (Abstract). Soil and Tillage Research 208 (2021) 104866.
Lucas, M., Kenobi, K., Von Wangenheim, D., Voβ, U., Swarup, K., De Smet, I., Van Damme, D., Lawrence, T., Péret, B., Mos-cardi, E., Barbeau, D., Godin, C., Salt, D., Stelzer, E. H., Maizel, A., Laplaze, L., & Bennett, M. J. (2013) Lateral root mor-phogenesis is dependent on the mechani-cal properties of the overlaying tissues. Proceedings of the National Academy of Sciences, 110(13), 5229-5234.
Meyer, J., Rein, P., Turner P., & Mathias, K. (2011) Good management practices manual for the cane sugar industry (Fi-nal). A sourcebook for sugarcane produc-tion produced by the International Fi-nance Corporation, Johannesburg, South America. pp. 36-40.
Michavila, G., Alibrandi, P., Cina, P., Welin, B., Castagnaro, A. P., Chalfound, N. R., Nogu-era, A. S., Puglia, A. M., Ciaccio, M., & Racedo, J., (2022) Plant growth-promoting isolated from sugarcane im-proves. Italian Journal of Agronomy, Vol 17:2006. DOI:10.4081/ija.2022.2006.
Moraes, E. R., Mageste, J. G., Lana, RM. Q., Sil-va, R. V., & Camargo, R. (2018) Sugar-cane: Organo-mineral fertilizer and bio-stimulants.
Munsif, F. M., Zahid, M., Arif, K. A., and Ahmad, I. (2018) Influence of planting date and yield and quality of sugarcane under the agro-climatic conditions of Mardan. Sar-bad Journal of Agriculture, 34(3): 649-655.
Oñal, P.A., (2021) Sugarcane Farm Profiles and Productivity in the Visayas, Philippines. Yawman Book Publishing House, Davao, Philippines.
Oñal, P.A, Neri, V.A & Jinon, R.J (2022) Chal-lenges in sugarcane extension: The cur-rent guide in increasing productivity at a lesser cost. Lambert Academic Publish-ing. Republic of Moldova, Europe. Pp. 6
Philippine Statistics Authority (2023) Major non-food and industrial crops. Quarterly Bulletin. April- June 2023, Vol17, No.2.
Philippot, L., (2019) The importance of the microbial community in soil for ecosys-tem functioning: Questions and answers. Earth-Science Reviews, 193. pp. 504-514.
Pierre, J.S., Perroux, J.M., & Rae, A.L. (2019) Screening for sugarcane root phenes re-veals that reducing tillering does not lead to an increase in root mass fraction. Fron-tiers in Plant Science. Vol 10, Article 119.
Pissolato, M.D., Cruz, L.P., Silveira, N.M., Ma-chado, E.C., & Ribeiro, R.V. (2021) Sugar-cane re-growth is dependent on root sys-tem size: An approach using young plants grown in nutrient solution. Bragantia, (80), e4321.
Pompelli, M. F., Jarma-Orozco, A. & Rodriguez-Paez, L. (2022) Screening of morpho-physiological, anatomical, and ultrastruc-tural traits to improve the elite genotype selection in sugarcane (Sacharrum offici-narum L.). Horticulturae, 8(11), 1069; https://doi-org/103390/horticulturae8111069.
Rai, V. K., Rathore, P. S., & Singh, S. P. (2020) Bio-stimulants in sugarcane agriculture: A review. Journal of Crop and Weed, 16(4), 107-114. doi:10.35844/2654-5546.2020.107.114.
Raven, P. H., Evert, R. F., & Eichhorn, S. E. (2015) Biology of Plants (8th ed). W.H. Freeman. Chapter 32: Phototropism and Its Significance.
Robinson, P. K. (2015) Enzyme: Principles and Biotechnological applications. Essays in Biochemistry, 59, 1-141.
Sandhu, H. S., Singh, M. P., Gilbert, R. A., & Odero, D. C. (2019) Sugarcane botany: A brief view. UF/IFAS Extension. #SS-Agri-234.
Santos, G.A., Nicchio B., Borges, M.A., Gualber-to., C.A., Perreira H.S., & Korndorfer, G.H. (2020) Effect of bio-stimulant on tillering, yield, and quality component of sugar-cane. Brazilian Journal of Development. Vol. 6, number 5. DOI: 10.34117/bjdv6n5-445.
Santos, F. & Diola, V. (2015) (abstract). Sugar-cane: Physiology. https://doi.org10.1016/8978-0-12-802239-9-00002-5. Pp. 13-33.
Segfried, J. (2024) Microbiome. (a definition). National Human Genome Research Insti-tute.
Singh, P., Singh, S. N., Tiwari, A. K., Pathak, S. K., Singh, A. K., Srivastava, S., & Mohan, N. (2019) Integration of sugarcane produc-tion technologies for enhanced cane and sugar productivity targeting to increase farmers’ income: Strategies and Pro-spects. 3 Biotech 9(2):48. doi:10.1007/s13205-019-1568-0.
Soppe, Wim JJ & Betsink, Leonie (2016) Dor-mancy in Plants. In: Els. John Wiley and Sons, Ltd: Chichester. DOI: 10.1002/9780470015902.pub2.
Sugar Regulatory Administration (2015) Sug-arcane roadmap 2020 (CY 2014-2015 to CY 2019-2020 version). “A Medium-Term Plan for the Philippine Sugarcane Indus-try”. Quezon City, Philippines. pp. 329.
Sugar Regulatory Administration. (2023) raw sugar production by month, area planted, yield per hectare.
Ullah, H., Khan, A., Khan W., & Lateef, M. (2020) A comprehensive review of sug-arcane.
Vasconcelos, AC.F. & Chaves, LH.G. (2019) Bio-stimulants and their role in improving plant growth under abiotic stresses. IntechOpen.
York, L.M., Nord, E.A., & Lynch, J.P., (2013) Integration of root phenes for soil re-source acquisition. Frontiers in Plant Sci-ence, Section Functional Plant Ecology
Vol. 4.
Zhao, D. Zhu, K. Momotaz, A., & Gao, X., (2020) Sugarcane plant growth and physiologi-cal responses to soil salinity during tiller-ing and stalk elongation. Agriculture 2020, 10, 608; doi:0-3390/agriculture10120608.