Maximizing Productivity of Cucumber (Cucumis sativa L) Applied with Bio-Stimulant Solution

Authors

  • Paulino A Oñal, Jr. School of Agriculture, University of Negros Occidental-Recoletos, 6100 Bacolod City, Philippines
  • Patricia S. Lapas School of Agriculture, University of Negros Occidental-Recoletos, 6100 Bacolod City, Philippines
  • Rizzi Ann S. Servino School of Agriculture, University of Negros Occidental-Recoletos, 6100 Bacolod City, Philippines
  • Francis E. Andrade School of Agriculture, University of Negros Occidental-Recoletos, 6100 Bacolod City, Philippines
  • Manuel D. Cortez School of Agriculture, University of Negros Occidental-Recoletos, 6100 Bacolod City, Philippines
  • Jessel Jane G. Baldonebro School of Agriculture, University of Negros Occidental-Recoletos, 6100 Bacolod City, Philippines

DOI:

https://doi.org/10.11594/ijmaber.05.08.19

Keywords:

Flower initiation, Biomass, Productivity, Foliage, Vines, Marketable fruits, Bio-stimulant

Abstract

The study sought to determine the effects of different levels of concentrations of bio-stimulant solution (BSS) in enhancing the growth and maximizing the yield of the cucumber plant. The study was conducted at UNO-R School of Agriculture, Philippines, last January 8, 2024, to March 18, 2024. The study was laid out in (CRD) with four treatments and replicated 4 times. The BSS solution was diluted in the water. It was applied at the base of the vine following the research protocol. Statistical analysis revealed highly significant differences among the treatments in growth and yield parameters such as length of vine and weight of marketable fruits, respectively. Likewise, results showed highly significant differences among treatments on flower initiation, number of leaves, number of fruits, circumference, and diameter of fruits, biomass, and root weight. For the longest vine, greater number of leaves, early flower initiation, great number of fruits, greater length and bigger circumference of fruits, heavier weight of fruits, heavier roots, and biomass accumulation were obtained from plants applied with 400ml BSS, followed by 300ml BSS, and 200ml BSS, respectively. While those who have no BSS had the lowest result in almost all of the parameters mentioned above. Four growth characteristics are strongly correlated with the length of vines, and three for the root weight, respectively.  This study recommends the use of 400ml BSS in enhancing the growth and maximizing the yield of cucumber.

Downloads

Download data is not yet available.

References

Abdelgalil, S. H., Abdallah, E., Jiang, W., Sallam, B. N. Yu, H., & Liu, P. (2021). Effect of Different Plant Bio-stimulants in Im-proving Growth Under Soilless Culture. European Journal of Biological Research 11(2): 146-155. https://dx.doi.org/105281/zenodo.4420278

Adeoti, A., Pitan O. O. R, Oyindamola, F., Adedoyin, O. A., Makinde, E. (2023). Ef-fect of plant Spacing on the Density of Cucumber Insect Pests of two Cucumber (Cucumis sativus L.) Varieties, Nigerian Journal of Horticultural Science 27(1):106-115 https://www.researchgate.net/publication/375697240_Effect_of_plant_Spacing_on_the_Density_of_Cucumber_Insect_Pests_of_two_Cucumber_Cucumis_sativus_L_Varieties

Baratova, M., Kosimova, Sh., Bustonova, S., & Baratova, M. (2021). Bio-stimulant Ap-plication in the Cultivation of Cucumber (Cucumis sativas, L.): A Case Study of Andijan Region. IOP Conference: Earth and Environment Science: 939 (2021) 012093. https://doi.org/10.1088/1755-1315/939/1/012093

Basirat, M., & Mousavi, S. M. (2022). Effect of foliar application of silicon and salicylic acid on regulation of yield and nutri-tional responses of yield and nutritional responses of greenhouse cucumber un-der high temperature. Journal of Plant Growth Regulation, 41(5), 1–10. https://doi.org/10.1007/s00344-021-10562-5

Behera, T. K., Boopalakrishnan, G., Jat, G. S., Das Munshi, A., Choudhary, H., Ravin-dran, A., Kumari, S., & Kumari, R. (2022). Deriving Stable Tropical Gynoecious In-bred Lines of Slicing Cucumber from American Pickling Cucumber using MABB. Horticulture, Environment, and Biotechnology: 63(2), 263-274. https://doi.org/10.1007/s13580-021-00392-5

Drobek, M., Frąc, M., & Cybulska, J. (2019). Plant Bio-stimulants: Importance of the Quality and Yield of Horticultural Crops and the Improvement of Plant Tolerance to Abiotic Stress—A Review. Agronomy: 9(6), 335; https://doi.org/10.3390/agronomy9060335

Elavarasan, E., Natarajan, S. K., Bhanu, A. S., Anandu, A., Senin, M. (2022). Experi-mental Investigation of Drying Cucum-ber in a Double Slope Solar Dryer Under Natural Convection and Open Sun Dry-ing, Innovations in Energy, Power and Thermal Engineering. Springer Singa-pore. https://doi.org/10.1007/978-981-16-4489-4-5.

European Bio-stimulant Industry Council (2023). Recent Insights into the Mode of Action of Seaweed-based Plant Stimu-lant. https://biostimulants.eu/wp-content/uploads/2023/01/20230116-EN-Seaweed-WhitePaper-v11.pdf

Garnepudi, S. L., Arunkumar, R., Swaminathan, V., & Siva, T. (2020). Kumar Research on Crops 21 (3), 568-573, 2020 https://scholar.google.com/scholar

Jeba, F. R., Farzana, M., Tabassum, T., Raham-an, T. I., Ullah, A., Araf, Y., Ansari, M. W. R., Gupta, D. R., Chakraborty, M., & Is-lam, T. (2022). Bio-stimulants for Pro-moting Eco-friendly Sustainable Agricul-ture. CABI eBooks pp. 36–54. https://doi.org/10.1079/9781789248098.0003

Jia, H. & Wang, H. (2021). Studies on Cucum-ber. ResearchGate. Intechopen. https://doi.org/10.5772/intechopen.97360.

Kenekar, A. (2023). Bio-stimulants in Agricul-ture: Challenges, Function, and Efficacy. Organica Biotech. https://organicabiotech.com/biostimulants-in-agriculture-challenges-function-and-efficacy/

Kim, J., & Cho, S. H. (2022). Macroalgal substi-tution effect in the diet on growth, body composition, and stress resistance of ju-venile sea cucumber (Apostichopus ja-ponicus) subjected to air and low salini-ty exposures. Journal of Applied Phycol-ogy, 34(2): 1123–1130. https://doi.org/10.1007/s10811-022-02689-z. Retrieved January 4, 2024

Kumar, H. D. & Alokey P. (2020). Role of bio-stimulant formulations in crop produc-tion: An overview. International Journal of Agricultural Sciences and Veterinary Medicine. 8: pp. 38-46

Kumar, R., Ivy, N., Bhattacharya, S., Dey, A., & Sharma, P. (2022). Coupled effects of microplastics and heavy metals on plants: Uptake, bioaccumulation, and environmental health perspectives. Sci-ence of the Total Environment, 836, 155619. https://doi.org/10.1016/j.scitotenv.2022.155619

Kumari, S., & Kumari, R. (2022). Deriving sta-ble tropical gynoecious inbred lines of slicing cucumber from American pick-ling cucumber using MABB. Horticulture, Environment, and Biotechnology, 63(2), 263–274. https://doi.org/10.1007/s13580-021-00392-5

Lobine, D., Rengasamy, K. R., & Mahomoodal-ly, M. F. (2022). Functional foods and bi-oactive ingredients harnessed from the ocean: Current status and future per-spectives. Critical Reviews in Food Sci-ence and Nutrition, 62(21), 5794–5823

Lugowska, M. (2019). Effects of Bio-stimulants on the Yield of Cucumber Fruits and Nu-trient Content. African Journal of Agri-cultural Research 14(35): 2112-2118. http://www.academicjournals.org/AJAR

Mallick, P. K. (2022). Evaluating the Potential Importance of Cucumber (Cucumis sa-tivus L. Cucurbitacae); A Brief Review. International Journal of Applied Science and Biotechnology, 10(1), 12-15. https://doi.org/10.3126/ijasbt.v10i1.44152

Metwaly, E., Al-Yasi, E., Ali, E., Hamada A. Fa-rouk, S. Farouk. (2022). Deteriorating Harmful Effects of Drought in Cucumber by Spraying Glycine Betaine, Agricultur-al and Food Sciences, Environmental Science. Agricultural and Food Sciences. https://www.semanticscholar.org/paper/Deteriorating-Harmful-Effects-of-Drought-in-by-Metwaly-Al Ya-si/748786cff0c96a3eff83912b36f4d9500325a8ee

Neoh, Z. Y., Hsuan-Chun L,, Chung-Cheng L., Suwor, P., & Wen-Shi, T. (2021). 12 Ge-netic Diversity and Geographic Distribu-tion of Cucurbit-Infecting Begomo-viruses in the Philippines Plants 12 (2): 272, 2023. https://doi.org/10.3390/plants12020272.

Pandey, S., & Kujur, S. N. (2022). Importance, Distribution, Botany and Genetics, the Cucumber Genome. Springer Interna-tional Publishing. https://doi.org/10.1007/978-3-030-88647-9_1

Radhika, S., Kumar, A., Kaur, H., Sharma, K., Verma, T., Chauhan, S., Lakhanpal, M., Choudhary, A., Singh, R. P., Reddy, D. M., Venkatapuram, A.,Mehta, S., & Husen, A. (2024). Bio-stimulant in Plant Protection and Performance. Chapter 1 – Current Understanding and Application of Bio-stimulants in Plants: An Overview. pp 1-20. https://doi.org/10.1016/8978-0-443-15884-1-00003-8

Rahimi, E., Barghjelveh, S., & Dong, P. (2022). A review of the diversity of bees, the at-tractiveness of host plants, and the ef-fects of landscape variables on bees in urban gardens. Agriculture & Food Se-curity, 11(1), 1–11. https://doi.org/10.1186/s40066-021-00353-2

Rodrigues, M., Baptistella, J. L. C., Horz, D. C., Bortolato, L. M., & Mazzafera P. (2020).Organic Plant Bio-stimulants and Fruit Quality. A Review Agronomy, 10(7), 988; https://doi.org/10.3390/agronomy10070988

Rouphael, Y, Spichal, L, Panzarova, K, Casa, R, & Colla, G. (2020). High-Throughput Plant Phenotyping for Developing Novel Bio-stimulants: From Lab to Field or from Field to Lab? Front. Plant Sci., 9, 1–19

Sallam, B. N., Lu, T., Yu, H., Li, Q., Sarfraz, S., Wang, H., Liu, P., & Jiang, W. (2021). Productivity Enhancement of Cucumber (Cucumis sativus L.) through Optimized Use of Poultry Manure and Mineral Fer-tilizers under Greenhouse Cultivation. Horticulturae 7(8), 256 https://doi.org/10.3390/horticulturae7080256

Sarkar, M., Chakraborty, B., & Srivasta, J. (2022). Key Diseases of Cucurbits and their Management, Diseases of Horticul-ture Crops. Apple Academic Press.

Sharma, V., Sharma, L., & Sandhu, K. S. (2020). Cucumber (Cucumis sativus L.), Springer: Singapore, pp. 333–340

Shooshtari, Z., Souri, F., Hasandokht, M. K., & Jari, S. K. (2020). Glycine Mitigates Ferti-lizer Requirements of Agricultural Crops: Case Study with Cucumber as a High Fertilizer Demanding Crop. Chemi-cal and Biological Technologies in Agri-culture, 7(1), 1–10. https://doi.org/10.1186/s40538-020-00185-5

Suriya, R. & Madhanakumari, P. (2023). Effect of Organic Manures and Bio-stimulants on the Yield of Snake Gourd (Trichosan-thes cucumerina L.). Annals of Plant and Soil: 25(1): 177-181. https://doi.org/10.47815/apsr.2023-10253

Valcárcel, J. V., Peiró, R. M., Pérez-de-Castro, A., & Díez, M. J. (2018). Morphological Characterization of the Cucumber (Cu-cumis sativus L.) collection of the CO-MAV’s Genebank Genetic resources and crop evolution 65(4): 1293-1306. https://link.springer.com/article/10.1007/s10722-018-0614-9.

Vignati, E., Lipska, M., Dunwell, J. M., Caccamo, M., & Simkin, A. J. (2022). Fruit devel-opment in sweet cherry. Plants, 11(12), 1531. https://doi.org/10.3390/plants11121531

Yang, L., & Sagar, V. (2022). Genome Evalua-tion of Cucumber about Cucurbit Family, the Cucumber Genome. Springer Inter-national Publishing. https://doi.org/10.1007/978-3-030-88647-9_9

Downloads

Published

2024-08-23

How to Cite

Oñal, Jr., P. A., Lapas, P. S. ., Servino, R. A. S. ., Andrade, F. E. ., Cortez, M. D. ., & Baldonebro, J. J. G. . (2024). Maximizing Productivity of Cucumber (Cucumis sativa L) Applied with Bio-Stimulant Solution. International Journal of Multidisciplinary: Applied Business and Education Research, 5(8), 3166-3178. https://doi.org/10.11594/ijmaber.05.08.19