Valorization of Cassava Peel and Shrimp Shell Waste for Bioplastic Film Development: Extraction, Characterization, and Response Modeling
DOI:
https://doi.org/10.11594/ijmaber.06.06.30Keywords:
bioplastic, cassava peel, chitosan, shrimp shell, starch, waste valorizationAbstract
Accumulation of waste food materials, such as cassava and shrimp peels, continues to contribute to rise in greenhouse emissions. This study aims to produce a bioplastic film made from extracted cassava peel starch (CPS) and shrimp shell chitosan (SSCHT), plasticized with sorbitol (SOR) using a constrained D-optimal mixture design. Films were assessed in terms of tensile strength, elongation at break, contact angle, opacity, and functional groups. Significant models were generated in terms of tensile strength (p = 0.0148), contact angle (p = 0.1049) and opacity (p = 0.6529). Cassava peel starch had a significant (p < 0.001) effect on tensile strength due to hydrogen bonding with chitosan, whereas elongation at break was significantly (p = 0.0017) affected by sorbitol due to its structural similarity to starch and larger molecular weight as compared to glycerol. Contact angle increased with the incorporation of shrimp shell chitosan (p = 0.4647) by minimizing hydrophilic regions for external water molecule penetration. Opacity was significantly (p = 0.0013) reduced by the incorporation of cassava peel starch due to the refraction of swollen starch granules. Fourier-Transform Infrared Spectroscopy (FTIR) verified the interactions in the CPS/SSCHT/SOR bioplastic film, while thermogravimetric analysis (TGA) provided insights on thermal stability of the bioplastic for industrial use. This study provides insight into the potential of food waste valorization using green extraction methods in producing environmentally friendly bioplastics for hard packaging applications.
Downloads
References
Abel, O. M., Chinelo, A. S., & Chidioka, N. R. (2021). Enhancing cassava peels starch as feedstock for biodegradable plastic. Jour-nal of Material Environmental Science, 12(2), 169-182. https://www.jmaterenvironsci.com/Document/vol12/vol12_N2/JMES-2021-12016-Abel.pdf
Abdollahi Moghaddam, M. R., Hesarinejad, M. A., & Javidi, F. (2023). Effect of the sorbi-tol to glycerol weight ratio and sugarcane bagasse concentration on the physicome-chanical properties of wheat starch-based biocomposite. Chemical and Biological Technologies in Agriculture, 10(1), 131. https://doi.org/10.1186/s40538-023-00504-6
Abdullah, A. H. D., Chalimah, S., Primadona, I., & Hanantyo, M. H. G. (2018, June). Physical and chemical properties of corn, cassava, and potato starchs. IOP Conference Se-ries: Earth and Environmental Science, 160, 012003. https://doi.org/10.1088/1755-1315/160/1/012003
Aberoumand, A., & Chabavi, M. (2024). Extrac-tion and quality control of chitin and chi-tosan from shrimp (vanami) lito-phenause vanamei shells wastes. Natural Product Communications, 19(10). https://doi.org/1934578X241291383
Aguilar, N. M., Arteaga-Cardona, F., De Anda Reyes, M., Gervacio-Arciniega, J., & Sala-zar-Kuri, U. (2019). Magnetic bioplastics based on isolated cellulose from cotton and sugarcane bagasse. Materials Chemis-try and Physics, 238, 121921. https://doi.org/10.1016/j.matchemphys.2019.121921
Albar, N., Anuar, S. T., Azmi, A. A., Soh, S. K. C., Bhubalan, K., Ibrahim, Y. S., Khalik, W. M. A. W. M., Abdullah, N. S., & Yahya, N. K. E. (2025). Chemical, Mechanical, and Wet-tability Properties of Bioplastic Material from Manihot esculenta Cassava–Chitosan Blends as Plastic Alternative. Starch‐Stärke, 77(1), 2300278. https://doi.org/10.1002/star.202300278
Amin, M. R., Chowdhury, M. A., & Kowser, M. A. (2019). Characterization and perfor-mance analysis of composite bioplastics synthesized using titanium dioxide nano-particles with corn starch. Heliyon, 5(8). https://doi.org/10.1016/j.heliyon.2019.e02009
Apriliyani, M. W., Purwadi, P., Manab, A., W Apriliyanti, M., & D Ikhwan, A. (2020). Characteristics of moisture content, swelling, opacity and transparency with addition chitosan as edible films/coating base on casein. Advance Journal of Food Science and Technology, 18(1), 9-14. http://doi.org/10.19026/ajfst.18.6041
Arooj, A., Khan, M., & Munawar, K. S. (2023). Preparation and physicochemical
characterization of starch/pectin and chi-tosan blend bioplastic films as future food packaging materials. Journal of Environ-mental Chemical Engineering, 12(1), 111825. https://doi.org/10.1016/j.jece.2023.111825
Arief, M. D., Mubarak, A. S., & Pujiastuti, D. Y. (2021). The concentration of sorbitol on bioplastic cellulose based carrageenan waste on biodegradability and mechani-cal properties bioplastic. In IOP Confer-ence Series: Earth and Environmental Science, 679, 012013. https://doi.org/10.1088/1755-1315/679/1/012013
Ballesteros-Mártinez, L., Pérez-Cervera, C., & Andrade-Pizarro, R. (2020). Effect of glycerol and sorbitol concentrations on mechanical, optical, and barrier proper-ties of sweet potato starch film. NFS jour-nal, 20, 1-9. https://doi.org/10.1016/j.nfs.2020.06.002
Bashir, K., & Aggarwal, M. (2019). Physico-chemical, structural and functional prop-erties of native and irradiated starch: a review. Journal of food science and tech-nology, 56, 513-523. https://doi.org/10.1007/s13197-018-3530-2
Cazón, P., Vázquez, M., & Velázquez, G. (2020). Regenerated cellulose films with chitosan and polyvinyl alcohol: Effect of the
moisture content on the barrier, mechan-ical and optical properties. Carbohydrate polymers, 236, 116031. https://doi.org/10.1016/j.carbpol.2020.116031
Chen, D., Zhao, M., Tan, W., Li, Y., Li, X., Li, Y., & Fan, X. (2019). Effects of intramolecular hydrogen bonds on lipophilicity. Europe-an Journal of Pharmaceutical Sciences, 130, 100-106. https://doi.org/10.1016/j.ejps.2019.01.020
Department of Agriculture. (2021). Invest-ment Guide for Cassava. Agribusiness and Marketing Assistance Service - Agribusi-ness Promotion Division. https://www.da.gov.ph/wp-content/uploads/2021/04/Investment-Guide-for-Cassava.pdf
Domene-López, D., García-Quesada, J. C., Mar-tin-Gullon, I., & Montalbán, M. G. (2019). Influence of starch composition and mo-lecular weight on physicochemical prop-erties of biodegradable films. Polymers, 11(7), 1084. http://dx.doi.org/10.3390/polym11071084
Elhaes, H., Ezzat, H. A., Ibrahim, A., Samir, M., Refaat, A., & Ibrahim, M. A. (2024). Spec-troscopic, Hartree–Fock and DFT study of the molecular structure and electronic properties of functionalized chitosan and chitosan-graphene oxide for electronic applications. Optical and Quantum Elec-tronics, 56(3), 458. https://doi.org/10.1007/s11082-023-05978-0
Fatima, S., Khan, M. R., Ahmad, I., & Sadiq, M. B. (2024). Recent advances in modified starch based biodegradable food packag-ing: A review. Heliyon, 10(6), e27453. https://doi.org/10.1016/j.heliyon.2024.e27453
Feky, A. R. E., Ismaiel, M., Yılmaz, M., Madkour, F. M., Nemr, A. E., & Ibrahim, H. a. H. (2024). Biodegradable plastic formulated from chitosan of Aristeus antennatus shells with castor oil as a plasticizer agent and starch as a filling substrate. Scientific Reports, 14(1), 11161. https://doi.org/10.1038/s41598-024-61377-9
Flores, J. M., Gallardo, A. K. R., Barba, B. J. D., & Tranquilan-Aranilla, C. (2024). Effect of ionizing radiation on the physicochemical and functional properties of silicone rub-ber and silicone foley catheter. Radiation Physics and Chemistry, 216, 111356. https://dx.doi.org/10.2139/ssrn.4540861
Fronza, P., Costa, A. L. R., Franca, A. S., & de Oliveira, L. S. (2023). Extraction and characterization of starch from cassava peels. Starch‐Stärke, 75(3-4), 2100245. http://dx.doi.org/10.1002/star.202100245
Garces, V., García-Quintero, A., Lerma, T. A., Palencia, M., Combatt, E. M., & Arrieta, Á. A. (2021). Characterization of cassava starch and its structural changes resulting of thermal stress by functionally-enhanced derivative spectroscopy (FEDS). Polysaccharides, 2(4), 866-877. https://doi.org/10.3390/polysaccharides2040052
Gerassimidou, S., Martin, O. V., Diaz, G. Y. F., Wan, C., Komilis, D., & Iacovidou, E. (2022). Systematic Evidence Mapping to Assess the Sustainability of Bioplastics Derived from Food Waste: Do We Know Enough? Sustainability, 15(1), 611. https://doi.org/10.3390/su15010611
Gharbi, F. Z., Bougdah, N., Belhocine, Y., Sbei, N., Rahali, S., Damous, M., & Seydou, M. (2023). Green and Fast Extraction of Chi-tin from Waste Shrimp Shells: Characteri-zation and Application in the Removal of Congo Red Dye. Separations, 10(12), 599. https://doi.org/10.3390/separations10120599
González-Torres, B., Robles-García, M. Á., Gutiérrez-Lomelí, M., Padilla-Frausto, J. J., Navarro-Villarruel, C. L., Del-Toro-Sánchez, C. L., ... & Reynoso-Marín, F. J. (2021). Combination of sorbitol and glyc-erol, as plasticizers, and oxidized starch improves the physicochemical character-istics of films for food preservation. Pol-ymers, 13(19), 3356. https://doi.org/10.3390/polym13193356
Guzman-Puyol, S., Tedeschi, G., Goldoni, L., Benítez, J. J., Ceseracciu, L., Koschella, A., Heinze, T., Athanassiou, A., & Heredia-Guerrero, J. A. (2022). Greaseproof, hy-drophobic, and biodegradable food pack-aging bioplastics from C6-fluorinated cel-lulose esters. Food Hydrocolloids, 128, 107562. https://doi.org/10.1016/j.foodhyd.2022.107562
Jaderi, Z., Tabatabaee Yazdi, F., Mortazavi, S. A., & Koocheki, A. (2023). Effects of glycerol and sorbitol on a novel biodegradable ed-ible film based on Malva sylvestris flower gum. Food Science & Nutrition, 11(2), 991-1000. https://doi.org/10.1002/fsn3.3134
Jõgi, K., & Bhat, R. (2020). Valorization of food processing wastes and by-products for bioplastic production. Sustainable Chem-istry and Pharmacy, 18, 100326. https://doi.org/10.1016/j.scp.2020.100326
Kowser, Md. A., Mahmud, H., Chowdhury, M. A., Hossain, N., Mim, J. J., & Islam, S. (2025). Fabrication and characterization of corn starch based bioplastic for packaging ap-plications. Results in Materials, 25, 100662. https://doi.org/10.1016/j.rinma.2025.100662
Kusumaningrum, M., Imani, N. A. C., Gemilang, S., Rahma, F. N., & Wulansarie, R. (2023, June). Synthesis and Physical Characteri-zation of Bioplastics Based on Jicama Starch (Pachyrhizur Erosus)–Chitosan.: Earth and Environmental Science, 1203(1), 012001. https://doi.org/10.1088/1755-1315/1203/1/012001
Lerbret, A., Mason, P. E., Venable, R. M., Cesàro, A. T. T. I. L. I. O., Saboungi, M. L., Pastor, R. W., & Brady, J. W. (2009). Molecular dy-namics studies of the conformation of sorbitol. Carbohydrate research, 344(16), 2229-2235. http://dx.doi.org/10.1016/j.carres.2009.08.003
Li, B., Elango, J., & Wu, W. (2020). Recent ad-vancement of molecular structure and biomaterial function of chitosan from marine organisms for pharmaceutical and nutraceutical application. Applied Sciences, 10(14), 4719. https://doi.org/10.3390/app10144719
Lomelí-Ramírez, M. G., Kestur, S. G., Man-ríquez-González, R., Iwakiri, S., de Muniz, G. B., & Flores-Sahagun, T. S. (2014). Bio-composites of cassava starch-green co-conut fiber: Part II—Structure and prop-erties. Carbohydrate Polymers, 102, 576–583. https://doi.org/10.1016/j.carbpol.2013.11.020
Miles, K. B., Ball, R. L., & Matthew, H. W. T. (2016). Chitosan films with improved tensile strength and toughness from N-acetyl-cysteine mediated disulfide bonds. Carbohydrate polymers, 139, 1-9. https://doi.org/10.1016/j.carbpol.2015.11.052
Mofokeng, J. P., Luyt, A. S., Tábi, T., & Kovács, J. (2012). Comparison of injection mould-ed, natural fibre-reinforced composites with PP and PLA as matrices. Journal of Thermoplastic Composite Materials, 25(8), 927-948. http://dx.doi.org/10.1177/0892705711423291
Mohammed, A. A., Hasan, Z., Borhana Omran, A. A., M Elfaghi, A., Khattak, M. A., Ilyas, R. A., & Sapuan, S. M. (2023). Effect of Vari-ous Plasticizers in Different Concentra-tions on: Physical, Thermal, Mechanical, and Structural Properties of: Wheat Starch-Based Films. Polymers, 15(1), 63. https://doi.org/10.3390/polym15010063
Mohan, K., Ganesan, A. R., Ezhilarasi, P. N., Kon-damareddy, K. K., Rajan, D. K., Sathishku-mar, P., Rajarajeswaran, J. & Conterno, L. (2022). Green and eco-friendly ap-proaches for the extraction of chitin and chitosan: A review. Carbohydrate Poly-mers, 287, 119349. https://doi.org/10.1016/j.carbpol.2022.119349
Mutmainna, I., Tahir, D., Gareso, P. L., & Ilyas, S. (2019). Synthesis composite starch-chitosan as biodegradable plastic for food packaging. Physics, 1317, 012053. https://doi.org/10.1088/1742-6596/1317/1/012053
National Institute of Science and Technology. (2022). D-Optimal designs. Engineering Statistics Handbook. 5.5.2.1. https://doi.org/10.18434/M32189
Ncube, L. K., Ude, A. U., Ogunmuyiwa, E. N., Zulkifli, R., & Beas, I. N. (2020). Environ-mental Impact of Food Packaging Materi-als: A Review of Contemporary Devel-opment from Conventional Plastics to Polylactic Acid Based Materials. Materials (Basel), 13(21), 4994. https://doi.org/10.3390/ma13214994
Nigam, S., Das, A. K., & Patidar, M. K. (2021). Synthesis, characterization and biodegra-dation of bioplastic films produced from Parthenium hysterophorus by incorpo-rating a plasticizer (PEG600). Environ-mental Challenges, 5, 100280. https://doi.org/10.1016/j.envc.2021.100280
Nirmal, N. P., Santivarangkna, C., Rajput, M. S., & Bengakul, S. (2020). Trends in shrimp processing waste utilization: An industrial prospective. Trends in Food Science & Technology, 103, 20-35. https://doi.org/10.1016/j.tifs.2020.07.001
Oghenejoboh, K. M., Orugba, H. O., Oghe-nejoboh, U. M., & Agarry, S. E. (2021). Value added cassava waste management and environmental sustainability in Nige-ria: A review. Environmental Challenges, 4, 100127. https://doi.org/10.1016/j.envc.2021.100127
Oluwasina, O. O., Akinyele, B. P., Olusegun, S. J., Oluwasina, O. O., & Mohallem, N. D. (2021). Evaluation of the effects of addi-tives on the properties of starch-based bioplastic film. SN Applied Sciences, 3, 1-12. https://doi.org/10.1007/s42452-021-04433-7
Oluwasina, O., Aderibigbe, A., Ikupoluyi, S., Oluwasina, O., & Ewetumo, T. (2024). Physico-electrical properties of starch-based bioplastic enhanced with acid-treated cellulose and graphene oxide fill-ers. Sustainable Chemistry for the Envi-ronment, 6, 100093. https://doi.org/10.1016/j.scenv.2024.100093
Ooi, Z. X., Ismail, H., Bakar, A. A., & Aziz, N. A. A. (2012). The Comparison Effect of Sorbi-tol and Glycerol as Plasticizing Agents on the Properties of Biodegradable Polyvi-nyl Alcohol/Rambutan Skin Waste Flour Blends. Polymer-Plastics Technology and Engineering, 51(4), 432–437. https://doi.org/10.1080/03602559.2011.639827
Pakizeh, M., Moradi, A., & Ghassemi, T. (2021). Chemical extraction and modification of chitin and chitosan from shrimp shells. European Polymer Journal, 159, 110709. https://doi.org/10.1016/j.eurpolymj.2021.110709
Pelissari, F. M., Yamashita, F., Garcia, M. A., Martino, M. N., Zaritsky, N. E., & Gross-mann, M. V. E. (2012). Constrained mix-ture design applied to the development of cassava starch–chitosan blown films. Journal of Food Engineering, 108(2), 262-267. https://doi.org/10.1016/j.jfoodeng.2011.09.004
Pither, R.J. (2003). CANNING | Quality Changes During Canning. In Caballero B. (Ed.) En-cyclopedia of Food Sciences and Nutri-tion, 2, 845-85. https://doi.org/10.1016/B0-12-227055-X/00163-2
Preethi, R., R, A. N., Murthy, P. S. K., & Reddy, J. P. (2024). Utilization of tamarind kernel powder for the development of bioplastic films: production and characterization. Sustainable Food Technology. https://doi.org/10.1039/d4fb00199k
Pujiono, P., & Nurhayati, A. (2020). Effects of Glycerol and Chitosan Doses for Cassava Peels Organic Waste as Bioplastic Food Packaging and The Effects on Physical and Microbiological Food Quality. Sappo-ro Medical Journal, 54(9), 1-11. https://www.maejournal.com/volume/SMJ/54/09/effects-of-glycerol-and-chitosan-doses-for-cassava-peels-organic-waste-as-bioplastic-food-packaging-and-the-effects-on-physical-and-microbiological-food-quality-5fa2cd514e4df.pdf
Rajesh, A. (2023, October 23). Ecofriendly Polymeric Material: Paving The Way For Circular Bio-Economy; The Effect of Chi-tosan on Biodegradability and Water Re-sistance of Starch based Bioplastic. Socie-ty for Science. https://www.societyforscience.org/jic/2023-student-finalists/aswath-rajesh/
Ramadhan, M. O., & Handayani, M. N. (2020). The potential of food waste as bioplastic material to promote environmental sus-tainability: A review. Materials Science and Engineering, 980, 012082. https://dx.doi.org/10.1088/1757-899X/980/1/012082
Ritchie, H., Samborska, V., & Roser, M. (2023). Plastic Pollution. https://ourworldindata.org/plastic-pollution?insight=around-05-of-plastic-waste-ends-up-in-the-ocean#article-licence
Sangian, H. F., Maneking, E., Tongkukut, S. H. J., Mosey, H. I. R., Suoth, V., Kolibu, H., Ta-nauma, A., Pasau, G., As’ari, A., Masinam-bow, V. a. J., Sadjab, B. A., Sangi, M. M., & Rondonuwu, S. B. (2021). Study of SEM, XRD, TGA, and DSC of Cassava Bioplastics catalyzed by ethanol. Materials Science and Engineering, 1115(1), 012052. https://doi.org/10.1088/1757-899x/1115/1/012052
Selvam, A., Ilamathi, P. M. K., Udayakumar, M., Murugesan, K., Banu, R. J., Khanna, Y., & Wong, J. (2021). Food Waste Properties. Current Developments in Biotechnology and Bioengineering, 11-41. http://dx.doi.org/10.1016/B978-0-12-819148-4.00002-6
Shafqat, A., Al-Zaqri, N., Tahir, A., & Alsalme, A. (2021). Synthesis and characterization of starch based bioplatics using varying plant-based ingredients, plasticizers and natural fillers. Saudi Journal of Biological Sciences, 28(3), 1739-1749. https://doi.org/10.1016/j.sjbs.2020.12.015
Shen, X. L., Wu, J. M., Chen, Y., & Zhao, G. (2010). Antimicrobial and physical prop-erties of sweet potato starch films incor-porated with potassium sorbate or chi-tosan. Food Hydrocolloids, 24(4), 285-290. https://doi.org/10.1016/j.jfoodeng.2011.09.004
Tan, S. X. ,Ong H. C. , Andriyana A., Lim S., Pang Y. L., Kusumo F., & Ngoh G. C. (2022). Characterization and Parametric Study on Mechanical Properties Enhancement in Biodegradable Chitosan-Reinforced Starch-Based Bioplastic Film. Polymers, 14(2), 278-294. https://doi.org/10.3390/polym14020278
TA Instruments. (2025). TA Instruments Mate-rials Science - TA Instruments. TA In-struments - Materials Science Solutions. https://www.tainstruments.com/
Thuppahige, V. T. W., Moghaddam, L., Welsh, Z. G., Wang, T., Xiao, H. W., & Karim, A. (2023). Extraction and characterisation of starch from cassava (Manihot esculen-ta) agro-industrial wastes. LWT, 182, 114787. https://doi.org/10.1016/j.lwt.2023.114787
Tsang, Y. F., Kumar, V., Samadar, P., Yang, Y., Lee, J., Ok, Y. S., Song, H., Kim, K.-H., Kwon, E. E., & Jeon, Y. J. (2019). Production of bioplastic through food waste valoriza-tion. Environmental International, 127, 625-644. https://doi.org/10.1016/j.envint.2019.03.076
United Nations Environment Programme (UNEP). (2024, February 28). Global Waste Management Outlook 2024. https://sustainable.kmutt.ac.th/current-waste-problems-an-unfolding-global-crisis/
Vallejo-Domínguez, D., Rubio-Rosas, E., Aguila-Almanza, E., Hernández-Cocoletzi, H., Ramos-Cassellis, M. E., Luna-Guevara, M. L., ... & Show, P. L. (2021). Ultrasound in the deproteinization process for chitin and chitosan production. Ultrasonics Sonochemistry, 72, 105417. https://doi.org/10.1016/j.ultsonch.2020.105417
Varun, T. K., Senani, S., Jayapal, N., Chikkerur, J., Roy, S., Tekulapally, V. B., ... & Kumar, N. (2017). Extraction of chitosan and its oli-gomers from shrimp shell waste, their characterization and antimicrobial effect. Veterinary world, 10(2), 170. https://doi.org/10.14202/vetworld.2017.170-175
Wang, W., Wang, H., Jin, X., Wang, H., Lin, T., & Zhu, Z. (2018). Effects of hydrogen bond-ing on starch granule dissolution, spinna-bility of starch solution, and properties of electrospun starch fibers. Polymer, 153, 643-652. https://doi.org/10.1016/j.polymer.2018.08.067
Wang, X. Y., Wang, J., Zhao, C., Ma, L., Rousseau, D., & Tang, C. H. (2023). Facile fabrication of chitosan colloidal films with pH-tunable surface hydrophobicity and me-chanical properties. Food Hydrocolloids, 137, 108429. https://doi.org/10.1016/j.foodhyd.2022.108429
Wang, X., Huang, L., Zhang, C., Deng, Y., Xie, P., Liu, L., & Cheng, J. (2020). Research ad-vances in chemical modifications of starch for hydrophobicity and its applica-tions: A review. Carbohydrate Polymers, 116292. https://doi.org/10.1016/j.carbpol.2020.116292
Wani, A. K., Akhtar, N., Mir, T. U. G., Rahayu, F., Suhara, C., Anjli, A., ... & Américo-Pinheiro, J. H. P. (2024). Eco-friendly and safe al-ternatives for the valorization of shrimp farming waste. Environmental Science and Pollution Research, 31(27), 38960-38989. https://doi.org/10.1007/s11356-023-27819-z
Widiarto, S., Yuwono, S. D., Rochliadi, A., & Ar-cana, I. M. (2017, February). Preparation and characterization of cellulose and nanocellulose from agro-industrial waste-cassava peel. Materials Science and Engineering 176(1), 012052. https://doi.org/10.1088/1757-899X/176/1/012052
William, W., & Wid, N. (2019). Comparison of extraction sequence on yield and physico-chemical characteristic of chitosan from shrimp shell waste. Journal of Physics: Conference Series, 1358 012002. https://doi.org/10.1088/1742-6596/1358/1/012002
WRAP. (n.d.). Plastic Packaging. https://www.wrap.ngo/taking-action/plastic-packaging
Yan, Q., Hou, H., Guo, P., & Dong, H. (2012). Ef-fects of extrusion and glycerol content on properties of oxidized and acetylated corn starch-based films. Carbohydrate Polymers, 87(1), 707–712. https://doi.org/10.1016/j.carbpol.2011.08.048
Zahiruddin, S.M.M., Othman, S.H., Tawakkal, I.S.M.A. & Talib, R.A. (2019). Mechanical and thermal properties of tapioca starch films plasticized with glycerol and
sorbitol. Food Research 3(2), 157-163. https://doi.org/10.26656/fr.2017.3(2).105
Zhang, Y., Xie, J., Ellis, W. O., Li, J., Appaw, W. O., & Simpson, B. K. (2024). Bioplastic films from cassava peels: Enzymatic transfor-mation and film properties. Industrial Crops and Products, 213, 118427. https://doi.org/10.1016/j.indcrop.2024.118427
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See the Effect of Open Access).