Multi-Objective Taguchi Optimization of Electrospinning Parameters for the Development of Poly-(vinyl alcohol)/Waste Wooden Utensil Nanocellulose/Phycocyanin Electrospun Fibers

Authors

DOI:

https://doi.org/10.11594/ijmaber.06.06.31

Keywords:

electrospinning, nanocellulose, phycocyanin, wooden utensil, taguchi optimization

Abstract

The lack of widespread commercial repurposing and recycling of waste wooden utensils contribute to pollution and toxic waste in the environment. This study aims to develop a sustainable method of repurposing waste wooden utensils into mechanically-robust electrospun fibers. Waste wooden utensil nanocellulose (WUNC) was produced using delignification, bleaching, and hydrolysis. Polymer mixtures consisting of 10% poly-vinyl alcohol (PVA), WUNC, and the pigment-protein complex phycocyanin (PC) were prepared for electrospinning following the Taguchi robust optimization design. Three parameters, namely WUNC addition (0.1, 0.2, 0.3 g./100 g), PC addition (0.1, 0.2, 0.3 g./100 g), and electrospinning voltage (25, 27.5, 30 kV), were varied to optimize loading capacity and tensile strength. Results showed WUNC addition of 0.2 g./100 g., PC addition of 0.3 g./100 g., and voltage of 25 kV optimal for loading capacity, with PC addition having the highest contribution at 44.54%. WUNC addition of 0.3 g./100 g., PC addition of 0.1 g./100 g., and voltage of 30 kV optimized tensile strength, with WUNC addition having the highest contribution at 57.99%. Produced WUNC resulted in a nanocellulose yield of approximately 16.81% with FTIR spectra revealing the removal of lignin and hemicellulose and increase of cellulose crystallinity. FTIR spectra for the electrospun fibers indicate successful integration of all components in the electrospun fibers. SEM analyses confirmed the creation of electrospun fibers within the nanosize range. Results confirmed the viability to extract nanocellulose and synthesize fibers from waste wooden utensils for enhancement of electrospun mats quality for biomedical applications, and offer new knowledge on wood-based nanomaterials.

Downloads

Download data is not yet available.

Author Biographies

  • Tabitha P. Vergel De Dios, Department of Science, Technology, Engineering, and Mathematics, The Academy, De La Salle University – Laguna, Laguna Boulevard, LTI Spine Road, Barangays Biñan and Malamig, Biñan City, Laguna, 4024, Philippines

    Tabitha P. Vergel de Dios is a senior high school student and an aspiring chemical engineer. Passionate about sustainability, material sciences, and research, Tabitha is an active member of DLSU’s STEM Society as the Vice President and has represented the school internationally in research colloquium and student exchanges.

  • Mia A. Luares, Department of Science, Technology, Engineering, and Mathematics, The Academy, De La Salle University – Laguna, Laguna Boulevard, LTI Spine Road, Barangays Biñan and Malamig, Biñan City, Laguna, 4024, Philippines

    Mia A. Luares is a senior high school student in the STEM department of DLSU Laguna. She has been a consistent honors student throughout her educational journey, and aspires to pursue a degree in chemical engineering. She is also an advocate of animal welfare and mental health as a member of DLSU Pusa and Haven, respectively.

  • Will Arboleda, Department of Science, Technology, Engineering, and Mathematics, The Academy, De La Salle University – Laguna, Laguna Boulevard, LTI Spine Road, Barangays Biñan and Malamig, Biñan City, Laguna, 4024, Philippines

    Will Arboleda is a grade 12 STEM student from DLSU Laguna. He has past achievements in robotics competitions internationally and aims to graduate with a degree in game development. Will also has membership in school organizations, as an actor in Teatro Lasalyano and as a feature writer in La Nouvelle.

  • Myiesha Dane C. Calibara, Department of Science, Technology, Engineering, and Mathematics, The Academy, De La Salle University – Laguna, Laguna Boulevard, LTI Spine Road, Barangays Biñan and Malamig, Biñan City, Laguna, 4024, Philippines

    Myiesha Dane C. Calibara is a Grade 12 STEM student at De La Salle University with aspirations of becoming a dermatologist. She has a strong passion for dermatology and skincare. Beyond the sciences, she actively explores the arts, serving as an Actor’s head for Teatro Lasalyano and an active member of DLSU Junior Paragon.

References

Abbas, J. A., Said, I. A., Mohamed, M. A., Yasin, S. A., Ali, Z. A., & Ahmed, I. H. (2018). Electrospinning of polyethylene ter-ephthalate (PET) nanofibers: optimiza-tion study using taguchi design of ex-periment. IOP Conference Series Mate-rials Science and Engineering, 454, 012130. https://doi.org/10.1088/1757-899x/454/1/012130

Asada, C., Kita, A., Sasaki, C., & Nakamura, Y. (2011). Ethanol production from dis-posable aspen chopsticks using

delignification pretreatments. Carbo-hydrate Polymers, 85(1), 196–200. https://doi.org/10.1016/j.carbpol.2011.02.020

Bennett, A., & Bogorad, L. (1973). Complemen-tary chromatic adaptation in a filamen-tous blue-green alga. The Journal of Cell Biology, 58(2), 419–435. https://doi.org/10.1083/jcb.58.2.419.

Bösiger, P., Richard, I. M. T., Le Gat, L., Michen, B., Schubert, M., Rossi, R. M., & Fortu-nato, G. (2018). Application of re-sponse surface methodology to tailor the surface chemistry of electrospun chitosan-poly(ethylene oxide) fibers. Carbohydrate Polymers, 186, 122–131. https://doi.org/10.1016/j.carbpol.2018.01.038

Bülbül, E. Ö., Okur, M. E., Okur, N. Ü., & Siafa-ka, P. I. (2022). Traditional and ad-vanced wound dressings: physical characterization and desirable proper-ties for wound healing. In Elsevier eBooks (pp. 19–50). https://doi.org/10.1016/b978-0-323-90514-5.00020-1

Buliga, D., Mocanu, A., Rusen, E., Diacon, A., Toader, G., Brincoveanu, O., Călinescu, I., & Boscornea, A. C. (2024). Phycocy-anin-Loaded Alginate-Based Hydrogel Synthesis and Characterization. Marine Drugs, 22(10), 434. https://doi.org/10.3390/md22100434

Chandra, J. C. S., George, N., & Narayanankutty, S. K. (2016). Isolation and characteri-zation of cellulose nanofibrils from arecanut husk fibre. Carbohydrate Pol-ymers, 142, 158-166. https://doi.org/10.1016/j.carbpol.2016.01.015

Chang, C., Chen, C., Yang, C., Chen, Y., Huang, M., Chang, C., Shie, J., Yuan, M., Chen, Y., Ho, C., Li, K., & Yang, M. (2016). Conversion of waste bamboo chop-sticks to bio-oil via catalytic hydro-thermal liquefaction using K2CO3. Sus-tainable Environment Research, 26(6), 262–267. https://doi.org/10.1016/j.serj.2016.08.002

Charoensopa, K., et al. (2024). Extraction of nanocellulose from the residue of sug-arcane bagasse fiber for Anti-Staphylococcus aureus (S. aureus) ap-plication. Polymers, 16(11), 1612. https://doi.org/10.3390/polym16111612

Chen, K., Hu, H., Zeng, Y., Pan, H., Wang, S., Zhang, Y., Shi, L., Tan, G., Pan, W., & Liu, H. (2022). Recent advances in electrospun nanofibers for wound dressing. European Polymer Journal, 178, 111490. https://doi.org/10.1016/j.eurpolymj.2022.111490

Chiang, K., Chen, Y., Tsai, W., Lu, C., & Chien, K. (2012). Effect of calcium based catalyst on production of synthesis gas in gasi-fication of waste bamboo chopsticks. International Journal of Hydrogen En-ergy, 37(18), 13737–13745. https://doi.org/10.1016/j.ijhydene.2012.03.042

Chieng, B., Lee, S., Ibrahim, N., Then, Y., & Loo, Y. (2017). Isolation and Characteriza-tion of Cellulose Nanocrystals from Oil Palm Mesocarp Fiber. Polymers, 9(8), 355. https://doi.org/10.3390/polym9080355

Couret, L., Irle, M., Belloncle, C., & Cathala, B. (2017). Extraction and characteriza-tion of cellulose nanocrystals from post-consumer wood fiberboard waste. Cellulose, 24(5), 2125–2137. https://doi.org/10.1007/s10570-017-1252-7

Das, S. K., Chakraborty, S., Naskar, S., & Ra-jabalaya, R. (2021). Techniques and methods used for the fabrication of bi-onanocomposites. In Elsevier eBooks (pp. 17–43). https://doi.org/10.1016/b978-0-12-821280-6.00007-6

Dranseikienė, D., Balčiūnaitė-Murzienė, G., Karosienė, J., Morudov, D., Juodžiukynienė, N., Hudz, N.,

Gerbutavičienė, R. J., & Savickienė, N. (2022). Cyano-Phycocyanin: Mecha-nisms of action on human skin and fu-ture perspectives in medicine. Plants, 11(9), 1249. https://doi.org/10.3390/plants11091249

Duong, T. (2020). Some statistical techniques applied to engineering mechanics problems. Vietnam Journal of Science and Technology. 57. 10. 10.15625/2525-2518/57/6A/14006

Fraley, S., Zalewski, J., Oom, M., & Terrien, B. (2023, March 11). 14.1: Design of Ex-periments via Taguchi Methods - Or-thogonal Arrays. Engineering Libre-Texts. https://eng.libretexts.org/Bookshelves/Industrial_and_Systems_Engineering/Chemical_Process_Dynamics_and_Controls_(Woolf)/14%3A_Design_of_Experiments/14.01%3A_Design_of_Experiments_via_Taguchi_Methods_-_Orthogonal_Arrays

Gao, M., Yang, Z., Liang, W., Ao, T., & Chen, W. (2023). Recent advanced freestanding pseudocapacitive electrodes for effi-cient capacitive deionization. Separa-tion and Purification Technology, 324, 124577. https://doi.org/10.1016/j.seppur.2023.124577

Garcia, J., et al. (2022). Effect of solvent and additives on the electrospinnability of BSA solutions. Colloids and Surfaces B Biointerfaces, 217, 112683. https://doi.org/10.1016/j.colsurfb.2022.112683

Gefen, A. (2021). The role of the thermal con-ductivity of dressings in prevention and treatment of wounds. Wounds Interna-tional, 12(1), 18–24. https://woundsinternational.com/wp-con-tent/uploads/2023/02/a0ce5d0a6b4faaaa7d441791c8fdb544.pdf

Haider, A., et al. (2018). A comprehensive re-view summarizing the effect of elec-trospinning parameters and potential applications of nanofibers in biomedi-cal and biotechnology. Arabian Journal of Chemistry, 11(8), 1165–1188. https://doi.org/10.1016/j.arabjc.2015.11.015

Hajieghrary, F., Ghanbarzadeh, B., Pezeshki, A., Dadashi, S., & Falcone, P. M. (2024). Development of hybrid Electrospun Nanofibers: Improving effects of cellu-lose nanofibers (CNFs) on electrospin-nability of gelatin. Foods, 13(13), 2114. https://doi.org/10.3390/foods13132114

Hamzaçebi, C. (2020). Taguchi method as a robust design tool. In IntechOpen eBooks. https://doi.org/10.5772/intechopen.94908

Huang, S., Zhou, L., Li, M., Wu, Q., & Zhou, D. (2017). Cellulose nanocrystals (CNCs) from corn stalk: Activation energy analysis. Materials, 10(1), 80. https://doi.org/10.3390/ma10010080

Irmak, N. Ş. O. (2020). Taguchi’s design for op-timization of phycocyanin extraction from Arthrospira (Spirulina) platensis. GSC Biological and Pharmaceutical Sciences, 11(3), 006–013. https://doi.org/10.30574/gscbps.2020.11.3.0158

Isogai, A. (2013). Wood nanocelluloses: fun-damentals and applications as new bio-based nanomaterials. Journal of Wood Science, 59(6), 449–459. https://doi.org/10.1007/s10086-013-1365-z

Jelle, B. P., Rüther, P., & Hovde, P. J. (2012). Investigations of Accelerated Climate Aged wood Substrates by Fourier Transform Infrared Material Charac-terization. Advances in Materials Sci-ence and Engineering, 2012, 1–6. https://doi.org/10.1155/2012/827471

Ji, X., Guo, J., Guan, F., Liu, Y., Yang, Q., Zhang, X., & Xu, Y. (2021). Preparation of elec-trospun polyvinyl Alco-hol/Nanocellulose composite film and evaluation of its biomedical perfor-mance. Gels, 7(4), 223. https://doi.org/10.3390/gels7040223

Jiyas, N., Sasidharan, I., & Kumar, K. B. (2023). Tensile properties and morphological insights into chemically modified fibres of Pseudoxytenanthera bamboo spe-cies as sustainable reinforcements in composites. Advances in Bamboo Sci-ence, 5, 100050. https://doi.org/10.1016/j.bamboo.2023.100050

Kandala, A. V. U., Solomon, D. G., & Arulraj, J. J. (2022). Advantages of Taguchi method compared to response surface meth-odology for achieving the best surface finish in wire electrical discharge ma-chining (WEDM). Journal of Mechani-cal Engineering, 19(1), 185-199. https://myjurnal.mohe.gov.my/public/article-view.php?id=181178

Karazi, S. M., Moradi, M., & Benyounis, K. Y. (2019). Statistical and Numerical Ap-proaches for modeling and optimizing laser micromachining Process-Review. In Elsevier eBooks. https://doi.org/10.1016/b978-0-12-803581-8.11650-9

Kargarzadeh, H., Huang, J., Lin, N., Ahmad, I., Mariano, M., Dufresne, A., Thomas, S., & Gałęski, A. (2018). Recent develop-ments in nanocellulose-based biode-gradable polymers, thermoplastic pol-ymers, and porous nanocomposites. Progress in Polymer Science, 87, 197–227. https://doi.org/10.1016/j.progpolymsci.2018.07.008

Kaur, P., Sharma, N., Munagala, M., Rajkhowa, R., Aallardyce, B., Shastri, Y., & Agrawal, R. (2021). Nanocellulose: Re-sources, Physio-Chemical properties, current uses and future applications. Frontiers in Nanotechnology, 3. https://doi.org/10.3389/fnano.2021.747329

Khandual, S., Sanchez, E. O. L., Andrews, H. E., & De La Rosa, J. D. P. (2021). Phycocy-anin content and nutritional profile of Arthrospira platensis from Mexico: ef-ficient extraction process and stability evaluation of phycocyanin. BMC Chem-istry, 15(1). https://doi.org/10.1186/s13065-021-00746-1

Kharazmi, A., Faraji, N., Hussin, R. M., Saion, E., Yunus, W. M. M., & Behzad, K. (2015). Structural, optical, opto-thermal and thermal properties of ZnS–PVA nanofluids synthesized through a radi-olytic approach. Beilstein Journal of Nanotechnology, 6, 529–536. https://doi.org/10.3762/bjnano.6.55

Kim, K. D., Han, D. N., & Kim, H. T. (2004). Op-timization of experimental conditions based on the Taguchi robust design for the formation of nano-sized silver par-ticles by chemical reduction method. Chemical Engineering Journal, 104(1–3), 55–61. https://doi.org/10.1016/j.cej.2004.08.003

Kondor, A., Santmarti, A., Mautner, A., Wil-liams, D., Bismarck, A., & Lee, K. (2021). On the BET surface area of nanocellulose determined using volu-metric, gravimetric and chromato-graphic adsorption methods. Frontiers in Chemical Engineering, 3. https://doi.org/10.3389/fceng.2021.738995

Krishna, P. S., Sudha, S., Reddy, K. A., Al-Dhabaan, F. A., Meher, N., Prakasham, R., & Charya, M. S. (2017). Studies on wound healing potential of red pig-ment isolated from marine Bacterium Vibrio sp. Saudi Journal of Biological Sciences, 26(4), 723–729. https://doi.org/10.1016/j.sjbs.2017.11.035

Kumar, P., Miller, K., Kermanshahi-Pour, A., Brar, S. K., Beims, R. F., & Xu, C. C. (2022). Nanocrystalline cellulose de-rived from spruce wood: Influence of process parameters. International Journal of Biological Macromolecules, 221, 426–434. https://doi.org/10.1016/j.ijbiomac.2022.09.017

Lee, H., Yamaguchi, K., Nagaishi, T., Murai, M., Kim, M., Wei, K., Zhang, K., & Kim, I. S. (2017). Enhancement of mechanical properties of polymeric nanofibers by controlling crystallization behavior us-ing a simple freezing/thawing process. RSC Advances, 7(69), 43994–44000. https://doi.org/10.1039/c7ra06545k

Leonés, A., Salaris, V., Mujica-Garcia, A., Ar-rieta, M. P., Lopez, D., Lieblich, M., Kenny, J. M., & Peponi, L. (2021). PLA Electrospun Fibers Reinforced with Organic and Inorganic Nanoparticles: A Comparative Study. Molecules, 26(16), 4925. https://doi.org/10.3390/molecules26164925

Li, N., Shi, C., Zhang, Z., Wang, H., & Liu, Y. (2019). A review on mixture design methods for geopolymer concrete. Composites Part B: Engineering, 178, 107490. https://doi.org/10.1016/j.compositesb.2019.107490

Liao, J., Nie, J., Sun, B., Jiao, T., Zhang, M., & Song, S. (2024). A cellulose composite filter with multi-stage pores had high filtration efficiency, low pressure drop, and degradable properties. Chemical Engineering Journal, 482, 148908. https://doi.org/10.1016/j.cej.2024.148908

Liao, H., Wu, Y., Wu, M., Zhan, X., & Liu, H. (2011). Aligned electrospun cellulose fibers reinforced epoxy resin compo-site films with high visible light trans-mittance. Cellulose, 19(1), 111–119. https://doi.org/10.1007/s10570-011-9604-1

Lin, K., Enomae, T., & Chang, F. (2019). Cellu-lose Nanocrystal Isolation from Hard-wood Pulp using Various Hydrolysis Conditions. Molecules, 24(20), 3724. https://doi.org/10.3390/molecules24203724

Luraghi, A., Peri, F., & Moroni, L. (2021). Elec-trospinning for drug delivery applica-tions: A review. Journal of Controlled Release, 334, 463-484. https://doi.org/10.1016/j.jconrel.2021.03.033

Martins, R., Mouro, C., Pontes, R., Nunes, J., & Gouveia, I. (2023). Natural Deep Eutec-tic Solvent Extraction of Bioactive Pigments from Spirulina platensis and Electrospinning Ability Assessment. Polymers, 15(6), 1574. https://doi.org/10.3390/polym15061574

Meng, Y., Wang, X., Wu, Z., Wang, S., & Young, T. M. (2015). Optimization of cellulose nanofibrils carbon aerogel fabrication using response surface methodology. European Polymer Journal, 73, 137–148. https://doi.org/10.1016/j.eurpolymj.2015.10.007

Mishra, R. K., Ha, S. K., Verma, K., & Tiwari, S. K. (2018). Recent progress in selected bio-nanomaterials and their engineer-ing applications: An overview. Journal of Science: Advanced Materials and Devices, 3(3), 263-288. https://doi.org/10.1016/j.jsamd.2018.05.003

Mohammadi, M., Mohammadi, N., & Me-hdipour-Ataei, S. (2020). On the prepa-ration of thin nanofibers of polysulfone polyelectrolyte for improving conduc-tivity of proton-exchange membranes by electrospinning: Taguchi design, re-sponse surface methodology, and ge-netic algorithm. International Journal of Hydrogen Energy, 45(58), 34110–34124. https://doi.org/10.1016/j.ijhydene.2020.09.125

Muraleedharan, M. N., Karnaouri, A., Piatkova, M., Ruiz-Caldas, M., Matsakas, L., Liu, B., Rova, U., Christakopoulos, P., & Mathew, A. P. (2021). Isolation and modification of nano-scale cellulose from organosolv-treated birch through the synergistic activity of LPMO and endoglucanases. International Journal of Biological Macromolecules, 183, 101–109. https://doi.org/10.1016/j.ijbiomac.2021.04.136

Novareza, O., Tama, I. P., Setyanto, N. W., Kusuma, L., Nirmalasari, P. C. (2017). APPLICATION OF TAGUCHI EXPERI-MENT FOR THE COMPOSITION OPTI-MIZATION OF RAW MATERIAL IN MAKING OF TERRAZO CHAIR. Journal of Environmental Engineering and Sus-tainable Technology, 4(2), 103-110. doi:http://dx.doi.org/10.21776/ub.jeest.2017.004.02.6

O’Connor, R., Cahill, P., & McGuinness, G. (2021). Effect of electrospinning pa-rameters on the mechanical and mor-phological characteristics of small di-ameter PCL tissue engineered blood vessel scaffolds having distinct micro and nano fibre populations – A DOE approach. Polymer Testing, 96, 107119. https://doi.org/10.1016/j.polymertesting.2021.107119

Oon, S. (2022). The environmental impact of disposable chopsticks. FoodUnfolded. https://www.foodunfolded.com/article/the-environmental-impact-of-disposable-chopsticks

Pai, C., Boyce, M. C., & Rutledge, G. C. (2009). Morphology of Porous and Wrinkled Fibers of Polystyrene Electrospun from Dimethylformamide. Macromole-cules, 42(6), 2102–2114. https://doi.org/10.1021/ma802529h

Patel, D. K., Dutta, S. D., Hexiu, J., Ganguly, K., & Lim, K.-T. (2020). Bioactive electro-spun nanocomposite scaffolds of poly(lactic acid)/cellulose nanocrys-tals for bone tissue engineering. Inter-national Journal of Biological Macro-molecules, 162, 1429–1441. https://doi.org/10.1016/j.ijbiomac.2020.07.246

Paulett, K., Brayer, W. A., Hatch, K., Kalous, T., Sewell, J., Liavitskaya, T., Vyazovkin, S., Liu, F., Lukáš, D., & Stanishevsky, A. (2017). Effect of nanocrystalline cellu-lose addition on needleless alternating current electrospinning and properties of nanofibrous polyacrylonitrile mesh-es. Journal of Applied Polymer Science, 135(5). https://doi.org/10.1002/app.45772

Pauly, H. M., Kelly, D. J., Popat, K. C., Trujillo, N. A., Dunne, N. J., McCarthy, H. O., & Donahue, T. L. H. (2016). Mechanical properties and cellular response of novel electrospun nanofibers for liga-ment tissue engineering: Effects of ori-entation and geometry. Journal of the Mechanical Behavior of Biomedical Ma-terials/Journal of Mechanical Behavior of Biomedical Materials, 61, 258–270. https://doi.org/10.1016/j.jmbbm.2016.03.022

Raju, V., Revathiswaran, R., Subramanian, K. S., Parthiban, K. T., Chandrakumar, K., Anoop, E. V., & Chirayil, C. J. (2023). Isolation and characterization of nano-cellulose from selected hardwoods, viz., Eucalyptus tereticornis Sm. and Casuarina equisetifolia L., by steam explosion method. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-022-26600-5

Ribeiro, A. S., Costa, S. M., Ferreira, D. P., Calhelha, R. C., Barros, L., Stojković, D., Soković, M., Ferreira, I. C., & Fanguei-ro, R. (2021). Chitosan/nanocellulose electrospun fibers with enhanced anti-bacterial and antifungal activity for wound dressing applications. Reactive and Functional Polymers/Reactive & Functional Polymers, 159, 104808. https://doi.org/10.1016/j.reactfunctpolym.2020.104808

Saraswat, P., Singh, S., Prasad, M., Misra, R., Rajput, V. D., & Ranjan, R. (2023). Ap-plications of bio-based nanomaterials in environment and agriculture: A re-view on recent progresses. Hybrid Ad-vances, 4, 100097. https://doi.org/10.1016/j.hybadv.2023.100097

Shanmugam, A., Sigamani, S., Venkatachalam, H., Jayaraman, J., & Ramamurthy, D. (2017). Antibacterial activity of ex-tracted phycocyanin from Oscillatoria sp. Journal of Applied Pharmaceutical Science, 7(3), 62-67. https://doi.org/10.7324/japs.2017.70310

Sihag, S. S., Pal, J., & Yadav, M. (2022). Extrac-tion and Characterization of Nanocel-lulose from Wheat Straw: Facile Ap-proach. Journal of Water and Environ-mental Nanotechnology, 7(3), 317-331. https://doi.org/10.22090/jwent.2022.03.007

Singh, H., Verma, A. K., Trivedi, A. K., & Gupta, M. (2023). Characterization of nanocel-lulose isolated from bamboo fibers. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.02.300

Sulaiman, O., Ghani, N. S., Rafatullah, M., Hashim, R., & Ahmad, A. (2011). Sorp-tion Equilibrium and Thermodynamic Studies of Zinc (II) Ions from Aqueous Solutions by Bamboo Sawdust. Journal of Dispersion Science and Technology, 32(4), 583–590. https://doi.org/10.1080/01932691003757322

Sun, Y., Cheng, S., Lu, W., Wang, Y., Zhang, P., & Yao, Q. (2019). Electrospun fibers and their application in drug controlled re-lease, biological dressings, tissue re-pair, and enzyme immobilization. RSC Advances, 9(44), 25712–25729. https://doi.org/10.1039/c9ra05012d

Suzuki, A., Sasaki, C., Asada, C., & Nakamura, Y. (2018). Production of cellulose nano-fibers from Aspen and Bode chopsticks using a high temperature and high pressure steam treatment combined with milling. Carbohydrate Polymers, 194, 303–310. https://doi.org/10.1016/j.carbpol.2018.04.047

Trushina, D. B., Borodina, T. N., Belyakov, S., & Antipina, M. N. (2022). Calcium car-bonate vaterite particles for drug de-livery: Advances and challenges. Mate-rials Today Advances, 14, 100214. https://doi.org/10.1016/j.mtadv.2022.100214

Valizadeh, A., & Farkhani, S. M. (2013). Elec-trospinning and electrospun nano-fibres. IET Nanobiotechnology, 8(2), 83–92. https://doi.org/10.1049/iet-nbt.2012.0040

Velázquez, M. E., et al. (2022). Nanocellulose extracted from Paraguayan residual agro-industrial biomass: Extraction process, physicochemical and morpho-logical characterization. Sustainability, 14(18), 11386. https://doi.org/10.3390/su141811386

Vishnoi, Y., Trivedi, A. K., Gupta, M., Singh, H., Rangappa, S. M., & Siengchin, S. (2023). Extraction of nano-crystalline cellulose for development of aerogel: Structural, morphological and antibac-terial analysis. Heliyon, 10(1), e23846. https://doi.org/10.1016/j.heliyon.2023.e23846

Wahib, S. A., Da'na, D. A., & Al-Ghouti, M. A. (2022). Insight into the extraction and characterization of cellulose nanocrys-tals from date pits. Arabian Journal of Chemistry, 15(3), 103650. https://doi.org/10.1016/j.arabjc.2021.103650

Wang, D., Cheng, W., Yue, Y., Xuan, L., Ni, X., & Han, G. (2018). Electrospun Cellulose Nanocrystals/Chitosan/Polyvinyl Al-cohol Nanofibrous Films and their Ex-ploration to Metal Ions Adsorption. Polymers, 10(10), 1046. https://doi.org/10.3390/polym10101046

Wang, T., & Zhao, Y. (2020). Optimization of bleaching process for cellulose extrac-tion from apple and kale pomace and evaluation of their potentials as film forming materials. Carbohydrate Pol-ymers, 253, 117225. https://doi.org/10.1016/j.carbpol.2020.117225

Wang, X., Cheng, W., Wang, D., Ni, X., & Han, G. (2019). Electrospun polyvinylidene fluoride-based fibrous nanocomposite membranes reinforced by cellulose nanocrystals for efficient separation of water-in-oil emulsions. Journal of Membrane Science, 575, 71–79. https://doi.org/10.1016/j.memsci.2018.12.057

Wulandari, W. T., Rochliadi, A., & Arcana, I. M. (2016). Nanocellulose prepared by ac-id hydrolysis of isolated cellulose from sugarcane bagasse. IOP Conference Se-ries Materials Science and Engineering, 107, 012045. https://doi.org/10.1088/1757-899x/107/1/012045

Xu, W., Xin, B., & Yang, X. (2020). Carboniza-tion of electrospun polyacrylonitrile (PAN)/cellulose nanofibril (CNF) hy-brid membranes and its mechanism. Cellulose, 27(7), 3789–3804. https://doi.org/10.1007/s10570-020-03006-y

Xu, Y., Wu, Z., Li, A., Chen, N., Rao, J., & Zeng, Q. (2024). Nanocellulose composite films in food packaging materials: a review. Polymers, 16(3), 423. https://doi.org/10.3390/polym16030423

Zarina, S., & Ahmad, I. (2014). Biodegradable Composite Films based on κ-carrageenan Reinforced by Cellulose Nanocrystal from Kenaf Fibers. BioRe-sources, 10(1). https://doi.org/10.15376/biores.10.1.256-271

Zhang, H., Fu, S., & Chen, Y. (2020). Basic un-derstanding of the color distinction of lignin and the proper selection of lig-nin in color-depended utilizations. In-ternational Journal of Biological Mac-romolecules, 147, 607–615. https://doi.org/10.1016/j.ijbiomac.2020.01.105

Zhang, H., Zhang, F., & Huang, Q. (2017). High-ly effective removal of malachite green from aqueous solution by hydrochar derived from phycocyanin-extracted algal bloom residues through hydro-thermal carbonization. RSC Advances, 7(10), 5790–5799. https://doi.org/10.1039/c6ra27782a

Zhang, Q., Young, T. M., Harper, D. P., Liles, T., & Wang, S. (2021). Optimization of electrospun poly(vinyl alco-hol)/cellulose nanocrystals composite nanofibrous filter fabrication using re-sponse surface methodology. Carbohy-drate Polymer Technologies and Appli-cations, 2, 100120. https://doi.org/10.1016/j.carpta.2021.100120

Zhang, Y., Zhang, C., & Wang, Y. (2021). Recent progress in cellulose-based electrospun nanofibers as multifunctional materials. Nanoscale Advances, 3(21), 6040–6047. https://doi.org/10.1039/d1na00508a

Downloads

Published

2025-06-24

How to Cite

Vergel De Dios, T. P., Luares, M. A., Arboleda, W., Calibara, M. D. C., & Estrellado, J. R. C. (2025). Multi-Objective Taguchi Optimization of Electrospinning Parameters for the Development of Poly-(vinyl alcohol)/Waste Wooden Utensil Nanocellulose/Phycocyanin Electrospun Fibers. International Journal of Multidisciplinary: Applied Business and Education Research, 6(6), 3045-3069. https://doi.org/10.11594/ijmaber.06.06.31