Simulation and Characterization of Macro-Nutrient Deficiency Symptoms of Abaca (Musa textilis Née var. Inosa) Grown Using Nutrient Film Technique (NFT)
DOI:
https://doi.org/10.11594/ijmaber.06.08.18Keywords:
Abaca, Macronutrient deficiency, Nutrient Film Technique (NFT)Abstract
This study was conducted in order to determine the effects of macronutrient deficiency to the morpho-physiological and biochemical properties of abaca. Randomized Complete Block Design was used in the study with three nutrient omissions (N, P & K) replicated three times with 12 samples per treatment replicate. This was conducted at the National Abaca Research Center screenhouse, Visayas State University, Baybay City, Leyte. Abaca under N and K deficiency produces the shortest plant height, pseudostem length, pseudostem girth, leaf length and leaf width. N deficient plant produces the smallest total leaf area while P deficient plants reduce pseudostem length and leaf width of abaca. However, P deficient plants showed comparable effects to the plant height, pseudostem girth, leaf length and total leaf area of abaca plants with complete nutrients. Furthermore, chlorophyll a and chlorophyll b content of abaca was lowest under N deficiency while control, P and K deficient plants showed comparable results. Free radical scavenging activity was also lowest under N and K deficient plants. Stomatal aperture was lowest under N, P & K deficient plants while P deficiency decreases stomatal length. These results suggests that abaca is more sensitive to N and K deficiency as most of the morpho-physiological and biochemical properties of abaca was significantly reduced under these conditions.
Downloads
References
Aron, D. (1949). Copper enzymes isolated chloroplasts, polyphenoloxidase in Beta vulgaris. Plant Physiology. 24: 1-15.
Bolivar, D.W. (2006). Recent advances in chlo-rophyll biosynthesis. Photosynth Res 89, 1–22 (2006). https://doi.org/10.1007/s11120-006-9076-6
Cakmak, I. (2005). The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J. Plant Nutr. Soil Sci. 2005, 168, 521–530. [Google Scholar] [CrossRef]
Carranca, C., Brunetto, G., & Tagliavini, M. (2018). Nitrogen nutrition of fruit trees to reconcile productivity and environmental concerns. Plants. 2018;7:4. doi: 10.3390/plants7010004. [DOI] [PMC free article] [PubMed] [Google Scholar]
Chen, L.H., Xu, M., Cheng, Z., & Yang, L.T. (2024). Effects of Nitrogen Deficiency on the Photosynthesis, Chlorophyll a Fluo-rescence, Antioxidant System, and Sulfur Compounds in Oryza sativa. International Journal of Molecular Sciences, 25(19), 10409. https://doi.org/10.3390/ijms251910409
Cook, J.G.A. (2001). Natural Fibres of Vegeta-ble Origin. In Handbook of Textile Fibres; COOK, J. G., Ed.; Woodhead Publishing, 2001; pp 3–78. https://doi.org/10.1533/9781845693152.3.
del Río, L.A. (2015). ROS and RNS in plant physiology: An overview. Journal of Ex-perimental Botany, 66, 2827–2837.
Dizon, T.O., Damasco, O.P., Lobina, I.T., Pinili, M.S., Lalusin, A.G., & Natsuaki, K.T. (2012). Induction of putative resistant lines of abaca (Musa textilis Nee) to Ba-nana bunchy top virus and Banana bract mosaic virus through in vitro mutagene-sis. Journal International Society for Southeast Asian Agricultural Sciences (ISSAAS), 18(1):87-99.
dos Santos Sarah, M.M., de Mello Prado, R., de Souza Júnior, J.P., Teixeira, G.C. M., dos Santos Duarte, J.C., & de Medeiros, R.L.S. (2021). Silicon Supplied via Root or Leaf Relieves Potassium Deficiency Effects in Common Bean. Sci Rep. 2021;11:19690. doi: 10.1038/s41598-021-99194-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
Fathi, A., & Zeidali, E. (2021). Conservation tillage and nitrogen fertilizer: a review of corn growth, yield and weed manage-ment. Cent Asian J Plant Sci. Innov., 1(3), 121–142. https://www.cajpsi.com/article_137559_7f1740644996104fe39b1b433015cfb.pdf
Gerardeaux, E., Jordan-Meille, L., Constantin, J., Pellerin, S., & Dingkuhn, M. (2010). Changes in plant morphology and dry matter partitioning caused by potassium deficiency in Gossypium hirsutum (L.). Environ. Exp. Bot. 67, 451–459. doi: 10.1016/j.envexpbot.2009.09.008 Cross-Ref Full Text | Google Scholar
Hawkesford, M., Horst, W., Kichey, T., Lam-bers, H., Schjoerring, J., Skrumsager M., & White P. (2012). Functions of macronu-trients. In Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Marschner, P., Ed.; Elsevier Ltd.: Amsterdam, The Neth-erlands, 2012; pp. 135–189. [Google Scholar] [CrossRef]
Hepler, P.K., Vidali, L., & Cheung, A.Y. (2001). Polarized cell growth in higher plants. Annu.Rev. Cell. Dev. Biol. 17, 159–187. doi: 10.1146/annurev.cellbio.17.1.159 PubMed Abstract | CrossRef Full Text | Google Scholar
Hiscox, J.D., & Israelstam GF. (1979). A Method for the Extraction of Chlorophyll from Leaf Tissue without Maceration. Canadi-an Journal of Botany, 57, 1332-1334. https://doi.org/10.1139/b79-163
Huang, L., Yang, J., Cui, X., Yang, H., Wang., S., & Zhuang, H. (2016). Synergy and Transi-tion of Recovery Efficiency of Nitrogen Fertilizer in Various Rice Genotypes un-der Organic Farming. Sustainability, 8(9), 854. https://doi.org/10.3390/su8090854
Hurtado, S.M.C., Silva, C.A., Resende, Á.V., de Corazza, E., Shozo, L., & Satoshi F. (2010). Sensibilidade do clorofilômetro para di-agnóstico nutricional de nitrogênio no milho. Ciência e Agrotecnologia, 34(3), 688–697. https://doi.org/10.1590/S1413-70542010000300023
Isidra-Arellano, M.C., Delaux, P.M., & Valds-Lopez, O. (2021). The Phosphate Starva-tion Response System: Its Role in the Regulation of Plant-Microbe Interactions. Plant Cell Physiol. 2021; 62:392–400. doi: 10.1093/pcp/pcab016. [DOI] [PubMed] [Google Scholar]
Kızılgeç, İ.F., Yıldırım, M., Akıncı, C., Albayrak, Ö., & Basdemir, F. (2015). The availabil-ity of advanced durum wheat population in yield and quality basis selection. Ziraat Fakültesi Dergisi-Süleyman Demirel Ün-iversitesi, 10(2), 62–68.
Li, P., Weng, J., Zhang, Q., Yu, L., Yao, Q., Chang, L., & Niu, Q. (2018). Physiological and Bi-ochemical Responses of Cucumis melo L. Chloroplasts to Low-Phosphate Stress. Front. Plant Sci. 2018;9:1525. doi: 10.3389/fpls.2018.01525. [DOI] [PMC free article] [PubMed] [Google Scholar]
Marathe, R.A., Murkute, A.A. & Dhinesh, B.K. (2016). Mineral Nutrient Deficiencies and Nutrient Interactions in Pomegranate. Natl. Acad. Sci. Lett. 2016;39:407–410. doi: 10.1007/s40009-016-0487-4. [DOI] [Google Scholar]
Maurel, C., Boursiac, Y., Luu, D.T., Santoni, V., Shahzad, Z., & Verdoucq, L. (2015). Aq-uaporins in Plants. Physiol Rev. 2015 Oct;95(4):1321-58. doi: 10.1152/physrev.00008.2015. PMID: 26336033.
Mendoza-Tafolla, R.O., Juarez-Lopez, P., Onti-veros-Capurata, R.E., Sandoval-Villa, M., Iran, A.T., & Alejo-Santiago, G. (2019).
Estimating Nitrogen and Chlorophyll Status of Romaine Lettuce Using SPAD and at LEAF Readings. Not. Bot. Horti Agrobot. Cluj-Napoca, 47(3), 751–756. https://doi.org/10.15835/nbha47311525
Matias, K.M.L., Sotto, R.C., Bautista, N.S., Prota-cio, C.M., & Magdalita, P.M. (2024). Influ-ence of Drought Stress and Foliar Appli-cation of Salicylic Acid on Early Vegeta-tive Stage of Cacao. Philippine Journal of Science, 153(2).
Munar, J. (2024). Revitalizing the abaca indus-try. Manila Chronicle, May 28, 2024
Negi, S., Barry, A.N., Friedland, N., Sudasinghe, N., Subramanian, S., Pieris, S., Holguin, F.O., Dungan, B., Schaub, T., & Sayre, R. (2016). Impact of nitrogen limitation on biomass, photosynthesis, and lipid accu-mulation in Chlorella sorokiniana. Jour-nal of Applied Phycology, 28, 803–812
Parac, E.P., Cruz, F.C.S., & Lalusin., A.G. (2021). Resistance reaction of Abaca (Musa tex-tilis Nee) hybrids to bunchy top and es-tablishment of disease severity rating scale for screenhouse screening. Govern-ance, 3(2), 18-26.
Parvin, K., Nahar, K., Hasanuzzaman, M., Bhuyan, M., Mohsin, S.M., & Fujita M. (2020). Exogenous vanillic acid enhances salt tolerance of tomato: Insight into plant antioxidant defense and glyoxalase systems. Plant Physiol. Biochem. 2020;150:109–120. doi: 10.1016/j.plaphy.2020.02.030. [DOI] [PubMed] [Google Scholar]
Philippine Fiber Industry Development Au-thority (PhilFIDA). (2023). Fiber statis-tics 2023. https://philfida.da.gov.ph/index.php/2016-11-10-03-32-59/2016-11-11-07-56-39
Prado, R.M. (2021). Mineral nutrition of tropi-cal plants. Mineral Nutrition of Tropical Plants. Austria, Springer Cham. 339p.
Raymundo, A.D. (2000). Saving abaca from the onslaught of the bunchy-top disease. Phil-ippine Agricultural Scientist 83:379-385.
Salas, F., Salas, R., Pole, V.N., & Quevedo, M. (2015). Shelf-Life and Free Radical Scav-enging Activity of Tomato (Lycopersicon Esculentum Mill.) Fruits Coated with Safe Phytochemicals. J. Food Nutr. Sci.. 3. 94-99. 10.11648/j.jfns.s.2015030102.28.
Sardans, J. & Peñuelas, J. (2021). Potassium Control of Plant Functions: Ecological and Agricultural Implications. Plants, 10(2), 419. https://doi.org/10.3390/plants10020419
Sawyer, J.E., Lundvall, J., Hawkins, J.S., & Bark-er, D.W. (2011). Sensing nitrogen stress in corn. Iowa State University. https://store.extension.iastate.edu/Product/Sensing-Nitrogen-Stress-in-Corn-pdf
Shah, S., Houborg, R., & McCabe, M. (2017). Response of Chlorophyll, Carotenoid and SPAD-502 Measurement to Salinity and Nutrient Stress in Wheat (Triticum aestivum L.). Agronomy, 7(3), 61. https://doi.org/10.3390/agronomy7030061
Shahri, W., Tahir, I., & Ahad, B. (2014). Abaca Fiber: A Renewable Bio-Resource for In-dustrial Uses and Other Applications. In
Biomass and Bioenergy: Processing and Properties; Springer, 2014
Sharman, M., Thomas, J.E., Skabo, S., & Holton, T.E. (2008). Abaca bunchy top virus, a new member of the genus Babuvirus (family Nanoviridae). Archives of Virolo-gy.153:135-147.
Shin, R., Berg, R.H., & Schachtman, D.P. (2005). Reactive oxygen species and root hairs in Arabidopsis root response to nitrogen, phosphorus and potassium deficiency. Plant & Cell Physiology, 46, 1350–1357
Sta. Cruz, F.C., Belen, G.B., & Alviar, A.N. (2016). Serological and Molecular Detec-tion of Mixed Bunchy Top and Mosaic Vi-rus Infections in Abaca (Musa textilis Nee). Philippine Agricultural Sci-ence99(1):68-78.
Wang, M., Zheng, Q., Shen, Q., & Guo, S. (2013). The critical role of potassium in plant stress response. Int. J. Mol. Sci. 2013;14:7370–7390. doi: 10.3390/ijms14047370. [DOI] [PMC free article] [PubMed] [Google Scholar]
Westerveld, S.M., McKeown, A.W., McDonald, M.R., & Scott-Dupree, CD. (2002). Chlo-rophyll and nitrate meters as nitrogen monitoring tools for selected vegeta-bles in southern Ontario. In XXVI Inter-national Horticultural Congress: Toward Ecologically Sound Fertilization Strate-gies for Field Vegetable Production. 627, (pp 259–266). https://doi.org/10.17660/ActaHortic.2003.627.33
Wieczorek, D., Żyszka-Haberecht, B., Kafka, A., & Lipok, J. (2022). Determination of phosphorus compounds in plant tissues: from colourimetry to advanced instru-mental analytical chemistry. Plant Meth-ods. 18. 22. 10.1186/s13007-022-00854-6.
Zakariyya, F., Setyawan, B., & Wahyo, S. (2017). Stomatal, Proline and Leaf Water Status Characters of Some Cocoa Clones (Theobroma cacao L.) on Prolonged Dry Season. Pelita Perkebunan: a Coffee and Cocoa Research Journal 33(1): 109-117. https://doi.org/10.3390/foods12183519
Downloads
Published
Issue
Section
License
Copyright (c) 2025 James Francienne Rosit

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See the Effect of Open Access).














