Barrier Property, Antimicrobial Susceptibility, and Biodegradability of Waste Cassava Peel Starch/Waste Shrimp Shell Chitosan/Sorbitol Bioplastic Films

Authors

  • Bianca Isabel B. Molina Department of Science, Technology, Engineering, and Mathematics, The Academy, De La Salle University – Laguna, Laguna Boulevard, LTI Spine Road, Barangays Biñan and Malamig, Biñan City, Laguna 4024, Philippines https://orcid.org/0009-0009-3258-9415 (unauthenticated)
  • Joachim Florenzo C. Dejuras Department of Science, Technology, Engineering, and Mathematics, The Academy, De La Salle University – Laguna, Laguna Boulevard, LTI Spine Road, Barangays Biñan and Malamig, Biñan City, Laguna 4024, Philippines https://orcid.org/0009-0009-5335-5335 (unauthenticated)
  • André E. Picar Department of Science, Technology, Engineering, and Mathematics, The Academy, De La Salle University – Laguna, Laguna Boulevard, LTI Spine Road, Barangays Biñan and Malamig, Biñan City, Laguna 4024, Philippines https://orcid.org/0009-0000-0019-0244 (unauthenticated)
  • Maria Julliana T. Veran Department of Science, Technology, Engineering, and Mathematics, The Academy, De La Salle University – Laguna, Laguna Boulevard, LTI Spine Road, Barangays Biñan and Malamig, Biñan City, Laguna 4024, Philippines https://orcid.org/0009-0000-4885-664X (unauthenticated)
  • John Ray C. Estrellado Department of Science, Technology, Engineering, and Mathematics, The Academy, De La Salle University – Laguna, Laguna Boulevard, LTI Spine Road, Barangays Biñan and Malamig, Biñan City, Laguna, 4024, Philippines https://orcid.org/0000-0002-5789-1380 (unauthenticated)

DOI:

https://doi.org/10.11594/ijmaber.06.08.16

Keywords:

bioplastic, water vapor, water uptake, antimicrobial, biodegradability

Abstract

Barrier properties, antimicrobial susceptibility potential, and biodegradability of bioplastics are critical indicators of bioplastic viability in industrial use, especially when raw materials to the production were sourced from food waste, such as waste cassava peel starch and shrimp shell chitosan. This study aims to investigate these properties from the created bioplastic film primarily consisting of cassava peel starch (CPS) and shrimp shell chitosan (SSCHT), with sorbitol (SOR) as a plasticizer, utilizing green methods and a constrained D-optimal mixture design. Films were assessed via water uptake, water vapor transmission rate, morphology, antimicrobial susceptibility, and biodegradability. Models were generated in terms of water uptake (p = 0.0684) and water vapor transmission rate (p = 0.0013). CPS (p = 0.0008) had a significant effect on water uptake levels due to its hydroxyl groups, which form hydrogen bonds that retain water. On the other hand, water vapor transmission rate was significantly affected by CPS (p = 0.0001) and SOR (p = 0.0001). Although SSCHT (p = 0.0787) was statistically insignificant its acetyl group reduced the hydrophilic nature of CPS. CPS and SOR were found to positively affect weight loss through biodegradation due to increased hydrophilicity and microbial colonization. Scanning electron microscopy (SEM) at 300x magnification revealed visibly smooth morphology of films, while at 1500x and 6500x magnification the films had visible crevices possibly due to greater SSCHT concentrations lower WVTR, and higher CPS concentrations raising water absorption levels.  

 

Downloads

Download data is not yet available.

References

Abdullah, A. D., Fikriyyah, A. K., & Furghoniyyah, U. (2020). Effect of chitin addition on water resistance properties of starch-based bioplastic properties. IOP Conference Series: Earth and Environ-mental Science, 483(1), 012002. https://doi.org/10.1088/1755-1315/483/1/012002

Agustin, Y. E., & Padmawijaya, K. S. (2017). Effect of glycerol and zinc oxide addition on antibacterial activity of biodegradable bioplastics from chitosan-kepok banana peel starch. IOP Conference Series Mate-rials Science and Engineering, 223, 012046. https://doi.org/10.1088/1757-899x/223/1/012046

Ahmed, H., Noyon, M. A. R., Uddin, Md. E., Rafid, M. M., Hosen, M. S., & Layek, R. K. (2025). Development and Characteriza-tion of Chitosan-Based Antimicrobial Films: A Sustainable Alternative to Plastic Packaging. Cleaner Chemical Engineer-ing, 11, 100157. https://www.sciencedirect.com/science/arti-cle/pii/S2772782325000129?via%3Dihub

Aranaz, I., Alcántara, A. R., Civera, M. C., Arias, C., Elorza, B., Heras Caballero, A., & Acosta, N. (2021). Chitosan: An Overview of Its Properties and Applications. Poly-mers, 13(19), 3256. https://doi.org/10.3390/polym13193256

Arief, M. D., Mubarak, A. S., & Pujiastuti, D. Y. (2021, February). The concentration of sorbitol on bioplastic cellulose based car-rageenan waste on biodegradability and mechanical properties bioplastic. Earth and Environmental Science 679(1), 012013. https://doi.org/10.1088/1755-1315/679/1/012013

Aziz, I. A., Mohamad, C. W. S. R., & Adollah, R. (2019). Fibre based bioplastic film from Morus sp. (mulberry) leaves for medical purpose. Journal of Physics Conference Series, 1372(1), 012069. https://doi.org/10.1088/1742-6596/1372/1/012069

Cazón, P., & Vázquez, M. (2019). Mechanical and barrier properties of chitosan com-bined with other components as food packaging film. Environmental Chemistry Letters, 18, 257–267. https://doi.org/10.1007/s10311-019-00936-3

Dasumiati, N., Saridewi, N., & Malik, M. (2019). Food packaging development of bio-plastic from basic waste of cassava peel (manihot uttilisima) and shrimp shell. IOP Conference Series Materials Science and Engineering, 602(1), 012053. https://doi.org/10.1088/1757-899x/602/1/012053

Dianursanti, N., & Khalis, S. (2018). The Effect of Compatibilizer Addition on Chlorella vulgaris Microalgae Utilization as a Mix-ture for Bioplastic. E3S Web of Confer-ences, 67, 03047. https://doi.org/10.1051/e3sconf/20186703047

Folino, A., Karageorgiou, A., Calabrò, P. S., & Komilis, D. (2020). Biodegradation of Wasted Bioplastics in Natural and Indus-trial Environments: A Review. Sustaina-bility, 12(15), 6030. https://doi.org/10.3390/su12156030

Ginting, M. H. S., Hasibuan, R., Lubis, M., Alan-jani, F., Winoto, F. A., & Siregar, R. C. (2018). Supply of avocado starch (Persea americana mill) as bioplastic material. IOP Conference Series Materials Science and Engineering, 309, 012098. https://doi.org/10.1088/1757-899x/309/1/012098

Hudzicki, J. (2009). Kirby-Bauer Disk Diffusion Susceptibility Test Protocol. ASM.org. https://asm.org/protocols/kirby-bauer-disk-diffusion-susceptibility-test-pro

Jiang, T., Duan, Q., Zhu, J., Liu, H., & Yu, L. (2020). Starch-based biodegradable ma-terials: Challenges and opportunities. Ad-vanced Industrial and Engineering Poly-mer Research, 3(1), 8-18. https://doi.org/10.1016/j.aiepr.2019.11.003

Kowser, Md. A., Mahmud, H., Chowdhury, M. A., Hossain, N., Mim, J. J., & Islam, S. (2025). Fabrication and characterization of corn starch based bioplastic for pack-aging applications. Elsevier, 25, 100662. https://doi.org/10.1016/j.rinma.2025.100662

Kusumastuti, Y., Putri, N. R. E., Timotius, D., Syabani, M. W., & Rochmadi, N. (2020). Effect of chitosan addition on the proper-ties of low-density polyethylene blend as potential bioplastic. Heliyon, 6(11), e05280. https://doi.org/10.1016/j.heliyon.2020.e05280

Li, X., Gu, N., Huang, T. Y., Zhong, F., & Peng, G. (2023). Pseudomonas aeruginosa: A typi-cal biofilm forming pathogen and an emerging but underestimated pathogen in food processing. Frontiers in Microbi-ology, 13. https://doi.org/10.3389/fmicb.2022.1114199

Lusiana, S. W., Putri, D., & Nurazizah, I. Z. (2019, November). Bioplastic properties of sago-PVA starch with glycerol and sor-bitol plasticizers. Journal of physics: con-ference series 1351(1), 012102. https://doi.org/10.1088/1742-6596/1351/1/012102

Oberlintner, A., Bajić, M., Kalčíková, G., Li-kozar, B., & Novak, U. (2021). Biodegra-dability study of active chitosan biopoly-mer films enriched with Quercus poly-phenol extract in different soil types. En-vironmental Technology & Innovation, 21, 101318. https://doi.org/10.1016/j.eti.2020.101318

Opoku, M. K. (2019). Preparation of Layered Carbon-Based Nanomaterials via Ther-mochemical Treatment. https://digital.library.txst.edu/server/api/core/bitstreams/e190582d-e65a-44eb-88f6-9b6d2208af9b/content

Payanthoth, N. S., Mut, N. N. N., Samanta, P., Li, G., & Jung, J. (2024). A review of biodeg-radation and formation of biodegradable microplastics in soil and freshwater envi-ronments. Applied Biological Chemistry, 67(1), 110. https://doi.org/10.1186/s13765-024-00959-7

Picar, A. E., Veran, M. J. T., Molina, B. I. & Deju-ras, J.F., and Estrellado, J. R. C. (2025). Ex-traction, Development, and Validation of Waste Cassava Peel Starch/Waste Shrimp Shell Chitosan/Sorbitol Bioplastic Films. International Journal of Multidisciplinary: Applied Business and Education Re-search, 6(6).

Priya, N. V., Vinitha, U. G., & Sundaram, M. M. (2021). Preparation of chitosan-based an-timicrobial active food packaging film in-corporated with Plectranthus amboinicus essential oil. Biocatalysis and Agricultural Biotechnology, 34, 102021. http://dx.doi.org/10.1016/j.bcab.2021.102021

Savitskaya, I. S., Kistaubayeva, A. S., Digel, I. E., & Shokatayeva, D. H. (2017). Physico-chemical and antibacterial properties of composite films based on bacterial cellu-lose and chitosan for wound dressing ma-terials. Eurasian Chemico-Technological Journal, 19(3), 255-264. https://doi.org/10.18321/ectj670

Shapi’i, R. A., Othman, S. H., Basha, R. K., & Naim, M. N. (2022). Mechanical, thermal, and barrier properties of starch films in-corporated with chitosan nanoparticles. Nanotechnology Reviews, 11(1), 1464–1477. https://doi.org/10.1515/ntrev-2022-0094

Silveira, Y. D. O., Franca, A. S., & Oliveira, L. S. (2025). Cassava Waste Starch as a Source of Bioplastics: Development of a Poly-meric Film with Antimicrobial Properties. Foods, 14(1), 113. https://doi.org/10.3390/foods14010113

Suryanegara, L., Fatriasari, W., Zulfiana, D., Anita, S. H., Masruchin, N., Gutari, S., & Kemala, T. (2021). Novel antimicrobial bioplastic based on PLA-chitosan by addi-tion of TiO 2 and ZnO. Journal of Envi-ronmental Health Science and Engineer-ing, 19, 415-425. https://doi.org/10.1007/s40201-021-00614-z

Tan, S. X. ,Ong H. C. , Andriyana A., Lim S., Pang Y. L., Kusumo F., & Ngoh G. C. (2022). Characterization and Parametric Study on Mechanical Properties Enhancement in Biodegradable Chitosan-Reinforced Starch-Based Bioplastic Film. Polymers, 14(2), 278-294. https://doi.org/10.3390/polym14020278

Tanpichai, S., Witayakran, S., Wootthika-nokkhan, J., Srimarut, Y., Woraprayote, W., & Malila, Y. (2020). Mechanical and antibacterial properties of the chitosan coated cellulose paper for packaging ap-plications: Effects of molecular weight types and concentrations of chitosan. In-ternational journal of biological

macromolecules, 155, 1510-151. https://doi.org/10.1016/j.ijbiomac.2019.11.128

Thuppahige, V. T. W., Moghaddam, L., Welsh, Z. G., Wang, T., & Karim, A. (2023). Inves-tigation of critical properties of Cassava (Manihot esculenta) peel and bagasse as starch-rich fibrous agro-industrial wastes for biodegradable food packaging. Food Chemistry, 422, 136200. https://doi.org/10.1016/j.foodchem.2023.136200

Ulyarti, U., Nazarudin, N., Ramadon, R., & Lumbanraja, P. (2020, June). Cassava starch edible film with addition of gelatin or modified cassava starch. Earth and Environmental Science, 515(1), 012030. http://dx.doi.org/10.1088/1755-1315/515/1/012030

Westlake, J. R., Tran, M. W., Jiang, Y., Zhang, X., Burrows, A. D., & Xie, M. (2022). Biode-gradable biopolymers for active packag-ing: demand, development and direc-tions. Sustainable Food Technology, 1(1), 50–72. https://doi.org/10.1039/d2fb00004k

Wrońska, N., Katir, N., Nowak-Lange, M., El Kadib, A., & Lisowska, K. (2023). Biode-gradable chitosan-based films as an al-ternative to plastic packaging. Foods, 12(18), 3519. https://doi.org/10.3390/foods12183519

Zhang, Y., Xie, J., Ellis, W. O., Li, J., Appaw, W. O., & Simpson, B. K. (2024). Bioplastic films from cassava peels: Enzymatic transformation and film properties. In-dustrial Crops and Products, 213, 118427. https://doi.org/10.1016/j.indcrop.2024.118427

Downloads

Published

2025-08-23

How to Cite

Molina, B. I. B., Dejuras, J. F. C., Picar, A. E., Veran, M. J. T., & Estrellado, J. R. C. (2025). Barrier Property, Antimicrobial Susceptibility, and Biodegradability of Waste Cassava Peel Starch/Waste Shrimp Shell Chitosan/Sorbitol Bioplastic Films. International Journal of Multidisciplinary: Applied Business and Education Research, 6(8), 3935-3952. https://doi.org/10.11594/ijmaber.06.08.16