Nanocellulose and Phycocyanin as Viable Additives for Electrospun Fibers: A Review of Functional Properties, Electrospinning Parameters, and Physicochemical Characterization
DOI:
https://doi.org/10.11594/ijmaber.06.08.08Keywords:
cyanobacteria, electrospinning, nanocellulose, parameters, phycocyanin, tensile strength, wound healingAbstract
This literature review aims to highlight the developments and future directions in the use of nanocellulose and phycocyanin as electrospinning additives for biomedical applications, specifically in wound healing. Nanocellulose, a cellulose derivative known for its surface area, mechanical strength, and biocompatibility, is proposed as a sustainable alternative to enhancers of mechanical properties. Phycocyanin, a blue pigment from cyanobacteria, possesses anti-inflammatory, antioxidant, and antimicrobial properties, which may potentially enhance the performance of nanocellulose. The combination of the two components in electrospun fibers demonstrates significant promise for effective wound healing applications. However, progress is limited by the scarcity of experimental studies integrating both materials. One of the future directions of the study is improving the stability and shelf-life of phycocyanin within nanofibers, including approaches such as encapsulation and protective coatings. Scaling and manufacturing challenges, including high energy consumption and harsh chemical treatments in nanocellulose extraction, as well as the parameters of electrospinning, need to be addressed to enable mainstream commercialization. Further exploration of sustainable and purely physical extraction methods for nanocellulose is also critical for environmentally friendly alternatives to process scale-up and intensification.
Downloads
References
Abazari, M. F., Gholizadeh, S., Karizi, S. Z., Bir-gani, N. H., Abazari, D., Paknia, S., De-rakhshankhah, H., Allahyari, Z., Amini, S. M., Hamidi, M., & Delattre, C. (2021). Re-cent Advances in Cellulose-Based Struc-tures as the Wound-Healing Biomaterials: A Clinically Oriented review. Applied Sci-ences, 11(17), 7769. https://doi.org/10.3390/app11177769
Adli, S. A., Ali, F., Azmi, A. S., Anuar, H., Nasir, N. a. M., Hasham, R., & Idris, M. K. H. (2020). Development of biodegradable cosmetic patch using a polylactic Ac-id/Phycocyanin–Alginate composite. Pol-ymers, 12(8), 1669. https://doi.org/10.3390/polym12081669
Ahmed, S., Khan, R. A., & Rashid, T. U. (2025). Cellulose nanocrystal based electrospun nanofiber for biomedical applications–A review. Carbohydrate Polymers, 348(Part A), 122838. https://doi.org/10.1016/j.carbpol.2024.122838
Aruna, S. T., Balaji, L. S., Senthil Kumar, S., & Shri Prakash, B. (2017). Electrospinning in solid oxide fuel cells – A review. Re-newable and Sustainable Energy Reviews, 67, 673–682. https://doi.org/10.1016/j.rser.2016.09.003
Bakar, S. S. S., Fong, K. C., Eleyas, A., & Nazeri, M. F. M. (2018). Effect of voltage and flow rate electrospinning parameters on
polyacrylonitrile electrospun fibers. IOP Conference Series Materials Science and Engineering, 318, 012076. https://doi.org/10.1088/1757-899x/318/1/012076
Bülbül, E. Ö., Okur, M. E., Okur, N. Ü., & Siafa-ka, P. I. (2022). Traditional and advanced wound dressings: physical characteriza-tion and desirable properties for wound healing. In Elsevier eBooks (pp. 19–50). https://doi.org/10.1016/b978-0-323-90514-5.00020-1
Chen, K., Hu, H., Zeng, Y., Pan, H., Wang, S., Zhang, Y., Shi, L., Tan, G., Pan, W., & Liu, H. (2022). Recent advances in electro-spun nanofibers for wound dressing. Eu-ropean Polymer Journal, 178, 111490. https://doi.org/10.1016/j.eurpolymj.2022.111490
Couret, L., Irle, M., Belloncle, C., & Cathala, B. (2017). Extraction and characterization of cellulose nanocrystals from post-consumer wood fiberboard waste. Cellu-lose, 24(5), 2125–2137. https://doi.org/10.1007/s10570-017-1252-7
Das, S. K., Chakraborty, S., Naskar, S., & Ra-jabalaya, R. (2021). Techniques and methods used for the fabrication of bi-onanocomposites. In Elsevier eBooks (pp. 17–43). https://doi.org/10.1016/b978-0-12-821280-6.00007-6
De Vrieze, S., Van Camp, T., Nelvig, A. et al. The effect of temperature and humidity on electrospinning. J Mater Sci 44, 1357–1362 (2009). https://doi.org/10.1007/s10853-008-3010-6
Dranseikienė, D., Balčiūnaitė-Murzienė, G., Karosienė, J., Morudov, D., Juodžiukynienė, N., Hudz, N., Ger-butavičienė, R. J., & Savickienė, N. (2022). Cyano-Phycocyanin: Mechanisms of ac-tion on human skin and future perspec-tives in medicine. Plants, 11(9), 1249. https://doi.org/10.3390/plants11091249
Dumanli, A. G. (2016). Nanocellulose and its Composites for Biomedical Applications. Current Medicinal Chemistry, 24(5), 512–528. https://doi.org/10.2174/0929867323666161014124008
Fernandes, R., Campos, J., Serra, M., Fidalgo, J., Almeida, H., Casas, A., Toubarro, D., & Barros, A. I. R. N. A. (2023). Exploring the benefits of phycocyanin: from spirulina cultivation to its widespread applications. Pharmaceuticals, 16(4), 592. https://doi.org/10.3390/ph16040592
Fu, Y., and Zhu, J. (2021). "Green design and recycling systems for solving the dilemma of disposable chopsticks waste caused by online food delivery: A review," BioRe-sources 16(4), 8640-8656.https://doi.org/10.15376/biores.16.4.fu
Gao, M., Yang, Z., Liang, W., Ao, T., & Chen, W. (2023). Recent advanced freestanding pseudocapacitive electrodes for efficient capacitive deionization. Separation and Purification Technology, 324, 124577. https://doi.org/10.1016/j.seppur.2023.124577
Ghomi, E. R., Khalili, S., Khorasani, S. N., Neisiany, R. E., & Ramakrishna, S. (2019). Wound dressings: Current advances and future directions. Journal of Applied Pol-ymer Science, 136(27). https://doi.org/10.1002/app.47738
Goswami, R., Singh, S., Narasimhappa, P., Ramamurthy, P. C., Mishra, A., Mishra, P. K., Joshi, H. C., Pant, G., Singh, J., Kumar, G., Khan, N. A., & Yousefi, M. (2024). Nanocellulose: A comprehensive review investigating its potential as an innova-tive material for water remediation. In-ternational Journal of Biological Macro-molecules, 254(Part 3), 127465. https://doi.org/10.1016/j.ijbiomac.2023.127465
Hao, Q., Schossig, J., Davide, T., Towolawi, A., Zhang, C., & Lu, P. (2024). Gravity-Driven Ultrahigh-Speed Electrospinning for the Production of Ethyl Cellulose Fibers with Tunable Porosity for Oil Absorption. ACS Sustainable Chemistry & Engineering, 13(1), 507–517. https://doi.org/10.1021/acssuschemeng.4c08259
Hsieh, Y. (2018). Cellulose Nanofibers: Elec-trospinning and Nanocellulose Self‐Assemblies. Advanced Green Composites, 67–95. https://doi.org/10.1002/9781119323327.ch4
Izadi, M., & Latifi, E. (2022). Comparison of the antibacterial properties of phycocyanin and its SNPs and their effects on rat blood cells and liver enzymes. Beni-Suef Univer-sity Journal of Basic and Applied Sciences, 11(1). https://doi.org/10.1186/s43088-022-00236-w
Ji, X., Guo, J., Guan, F., Liu, Y., Yang, Q., Zhang, X., & Xu, Y. (2021). Preparation of elec-trospun polyvinyl Alcohol/Nanocellulose composite film and evaluation of its bio-medical performance. Gels, 7(4), 223. https://doi.org/10.3390/gels7040223
Jodnok, S., Choeisai, P., Kruehong, C., & Choeisai, K. (2021b). Recycling disposa-ble bamboo chopstick waste as a renew-able energy resource: Case study in Khon Kaen University, Thailand. Sustainable Environment Research, 31(1). https://doi.org/10.1186/s42834-021-00101-y
Kargarzadeh, H., Huang, J., Lin, N., Ahmad, I., Mariano, M., Dufresne, A., Thomas, S., & Gałęski, A. (2018). Recent developments in nanocellulose-based biodegradable polymers, thermoplastic polymers, and porous nanocomposites. Progress in Pol-ymer Science, 87, 197–227. https://doi.org/10.1016/j.progpolymsci.2018.07.008
Kaya, S., & Derman, S. (2023). İDEAL YARA ÖRTÜSÜNÜN ÖZELLİKLERİ. Ankara Uni-versitesi Eczacilik Fakultesi Dergisi, 47(3), 5. https://doi.org/10.33483/jfpau.1253376
Khandual, S., Sanchez, E. O. L., Andrews, H. E., & De La Rosa, J. D. P. (2021). Phycocya-nin content and nutritional profile of Ar-throspira platensis from Mexico: efficient extraction process and stability evalua-tion of phycocyanin. BMC Chemistry, 15(1). https://doi.org/10.1186/s13065-021-00746-1
Khodayari, A., Vats, S., Mertz, G., Schnell, C. N., Fuentes Rojas, C., & Seveno, D. (2025). Electrospinning of cellulose nanocrystals: Procedure and optimization. Carbohy-drate Polymers, 347, 122698. https://doi.org/10.1016/j.carbpol.2024.122698
Kumar, P., Miller, K., Kermanshahi-Pour, A., Brar, S. K., Beims, R. F., & Xu, C. C. (2022). Nanocrystalline cellulose derived from spruce wood: Influence of process pa-rameters. International Journal of Biolog-ical Macromolecules, 221, 426–434. https://doi.org/10.1016/j.ijbiomac.2022.09.017
Leong, M., Kong, Y., Harun, M., Looi, C., & Wong, W. (2023). Current advances of nanocellulose application in biomedical field. Carbohydrate Research, 532, 108899. https://doi.org/10.1016/j.carres.2023.108899
Luo, C. (2013). China’s 80 billion disposable chopsticks a burden on forests. Hong Kong: South China Morning Post. https://www.scmp.com/news/china/article/1188299/chinas-80-billion-disposable-chopsticks-burden-forests
Meng, Z., Liu, J., Zhang, R., Ren, Y., Qi, Q., Cui, B., Gou, Y., Zhuang, S., Zhao, T., Liu, Q., Bao, X., & Ren, C. (2025). Phycocyanin-based multifunctional hydrogel with self-healing, hemostatic, antioxidative, and antibacterial activity for wound healing. International Journal of Biological Mac-romolecules, 310(Part 2), 143254. https://doi.org/10.1016/j.ijbiomac.2025.143254
Moon, R.J., Schueneman, G.T. & Simonsen, J. Overview of Cellulose Nanomaterials, Their Capabilities and Applications. JOM 68, 2383–2394 (2016). https://doi.org/10.1007/s11837-016-2018-7
Mouro, C., & Gouveia, I. C. (2023). Electrospun wound dressings with antibacterial func-tion: a critical review of plant extract and essential oil incorporation. Critical Re-views in Biotechnology, 44(4), 641–659. https://doi.org/10.1080/07388551.2023.2193859
Muraleedharan, M. N., Karnaouri, A., Piatkova, M., Ruiz-Caldas, M., Matsakas, L., Liu, B., Rova, U., Christakopoulos, P., & Mathew, A. P. (2021). Isolation and modification of nano-scale cellulose from organosolv-treated birch through the synergistic ac-tivity of LPMO and endoglucanases. In-ternational Journal of Biological Macro-molecules, 183, 101–109. https://doi.org/10.1016/j.ijbiomac.2021.04.136
Mutlu, B., Çaylak, S., & Duman, Ş. (2022). In-corporation of cerium oxide into hydroxy-apatite/chitosan composite scaffolds for bone repair. https://doiserbia.nb.rs/Article.aspx?ID=1820-61312203207M
Mutlu, G., Calamak, S., Ulubayram, K., & Guven, E. (2017). Curcumin-loaded electrospun PHBV nanofibers as potential wound-dressing material. Journal of Drug Deliv-ery Science and Technology, 43, 185–193. https://doi.org/10.1016/j.jddst.2017.09.017
Patil, T. V., Patel, D. K., Dutta, S. D., Ganguly, K., Santra, T. S., & Lim, K. (2021). Nanocellu-lose, a versatile platform: From the deliv-ery of active molecules to tissue engi-neering applications. Bioactive Materials, 9, 566–589. https://doi.org/10.1016/j.bioactmat.2021.07.006
Pellegrino, P., Bramanti, A. P., Farella, I., Cas-cione, M., De Matteis, V., Della Torre, A., Quaranta, F., & Rinaldi, R. (2022). Pulse-Atomic Force Lithography: a powerful nanofabrication technique to fabricate constant and Varying-Depth nanostruc-tures. Nanomaterials, 12(6), 991. https://doi.org/10.3390/nano12060991
Raju, V., Revathiswaran, R., Subramanian, K. S., Parthiban, K. T., Chandrakumar, K., Anoop, E. V., & Chirayil, C. J. (2023). Isola-tion and characterization of nanocellu-lose from selected hardwoods, viz., Euca-lyptus tereticornis Sm. and Casuarina eq-uisetifolia L., by steam explosion method. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-022-26600-5
Refate, A., Mohamed, Y., Mohamed, M., Sobhy, M., Samhy, K., Khaled, O., Eidaroos, K., Batikh, H., El-Kashif, E., El-Khatib, S., & Mehanny, S. (2023). Influence of electro-spinning parameters on biopolymers nanofibers, with emphasis on cellulose & chitosan. Heliyon, 9(6), e17051. https://doi.org/10.1016/j.heliyon.2023.e17051
Resch, A., Staud, C., & Radtke, C. (2021). Nano-cellulose‐based wound dressing for con-servative wound management in children with second‐degree burns. International Wound Journal, 18(4), 478–486. https://doi.org/10.1111/iwj.13548
Ribeiro, A. S., Costa, S. M., Ferreira, D. P., Calhelha, R. C., Barros, L., Stojković, D., Soković, M., Ferreira, I. C., & Fangueiro, R. (2021). Chitosan/nanocellulose elec-trospun fibers with enhanced antibacte-rial and antifungal activity for wound dressing applications. Reactive and Func-tional Polymers/Reactive & Functional Polymers, 159, 104808. https://doi.org/10.1016/j.reactfunctpolym.2020.104808
Safari, R., Amiri, Z. R., & Kenari, R. E. (2020). Antioxidant and antibacterial activities of C-phycocyanin from common name Spir-ulina platensis. Iranian Journal of Fisher-ies and Sciences, 19(4), 1911–1927. https://doi.org/10.22092/ijfs.2019.118129
Shankaran, D. R. (2018). Cellulose nanocrys-tals for health care applications. In Else-vier eBooks (pp. 415–459). https://doi.org/10.1016/b978-0-08-101971-9.00015-6
Shanmugam, A., Sigamani, S., Venkatachalam, H., Jayaraman, J., & Ramamurthy, D. (2017). Antibacterial activity of extracted phycocyanin from Oscillatoria sp. Journal of Applied Pharmaceutical Science. https://doi.org/10.7324/japs.2017.70310
Sihag, S. S., Pal, J., & Yadav, M. (2022). Extrac-tion and Characterization of Nanocellu-lose from Wheat Straw: Facile Approach. Journal of Water and Environmental Nanotechnology, 7(3), 317-331. https://doi.org/10.22090/jwent.2022.03.007
Singh, H., Verma, A. K., Trivedi, A. K., & Gupta, M. (2023). Characterization of nanocellu-lose isolated from bamboo fibers. Mate-rials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.02.300
Singh, Y. P., Dasgupta, S., Nayar, S., & Bhaskar, R. (2020). Optimization of electrospin-ning process & parameters for producing defect-free chitosan/polyethylene oxide nanofibers for bone tissue engineering. Journal of Biomaterials Science, Polymer Edition, 31(6), 781–803. https://doi.org/10.1080/09205063.2020.1718824
Suzuki, A., Sasaki, C., Asada, C., & Nakamura, Y. (2018). Production of cellulose nano-fibers from Aspen and Bode chopsticks using a high temperature and high pres-sure steam treatment combined with milling. Carbohydrate Polymers, 194, 303–310. https://doi.org/10.1016/j.carbpol.2018.04.047
Tamo, A. K. (2024). Nanocellulose-Based Hy-drogels as Versatile Bio-Based Materials with Interesting Functional Properties for Tissue Engineering Applications. Journal of Materials Chemistry B, 12(32), 7692–7759. https://doi.org/10.1039/d4tb00397g
The Economist. (2014, September 13). Sticks in the gullet. The Economist. https://www.economist.com/china/2014/09/13/sticks-in-the-gullet
Tripatanasuwan, S., Zhong, Z., & Reneker, D. H. (2007). Effect of evaporation and solidifi-cation of the charged jet in electrospin-ning of poly(ethylene oxide) aqueous so-lution. Polymer, 48(19), 5742–5746. https://doi.org/10.1016/j.polymer.2007.07.045
Trushina, D. B., Borodina, T. N., Belyakov, S., & Antipina, M. N. (2022). Calcium carbonate vaterite particles for drug delivery: Ad-vances and challenges. Materials Today Advances, 14, 100214. https://doi.org/10.1016/j.mtadv.2022.100214
Usov, I., Nyström, G., Adamcik, J., Handschin, S., Schütz, C., Fall, A., Bergström, L., & Mezzenga, R. (2015). Understanding nanocellulose chirality and structure–properties relationship at the single fibril level. Nature Communications, 6(1). https://doi.org/10.1038/ncomms8564
Vergel De Dios, T. P., Luares, M. A., Arboleda, W., Calibara, M. D. C., & Estrellado, J. R. C. (2025). Multi-Objective Taguchi Optimi-zation of Electrospinning Parameters for the Development of Poly-(vinyl alco-hol)/Waste Wooden Utensil Nanocellu-lose/Phycocyanin Electrospun Fibers. In-ternational Journal of Multidisciplinary: Applied Business and Education Research, 6(6), 3045-3069. https://doi.org/10.11594/ijmaber.06.06.31
Wang, D., Cheng, W., Yue, Y., Xuan, L., Ni, X., & Han, G. (2018). Electrospun Cellulose Nanocrystals/Chitosan/Polyvinyl Alcohol Nanofibrous Films and their Exploration to Metal Ions Adsorption. Polymers, 10(10), 1046. https://doi.org/10.3390/polym10101046
Wcw-Admin-Support. (2023, April 28). Types of wound dressings and when to use them. West Coast Wound & Skin Care. https://westcoastwound.com/types-of-wound-dressings-and-when-to-use-them/
Yang, G.-Z., Li, H.-P., Yang, J.-H., Wan, J., & Yu, D.-G. (2017). Influence of working tem-perature on the formation of electrospun polymer nanofibers. Nanoscale Research Letters, 12(1), 55. https://doi.org/10.1186/s11671-016-1824-8
Zahra, F. T., Zhang, Y., Ajayi, A. O., Quick, Q., & Mu, R. (2024). Optimization of electro-spinning parameters for lower molecular weight polymers: A case study on polyvi-nylpyrrolidone. Polymers, 16(9), 1217. https://doi.org/10.3390/polym16091217
Zaman, H. U., Islam, J., Khan, M. A., & Khan, R. A. (2011). Physico-mechanical properties of wound dressing material and its bio-medical application. Journal of the Me-chanical Behavior of Biomedical Materi-als/Journal of Mechanical Behavior of Bi-omedical Materials, 4(7), 1369–1375. https://doi.org/10.1016/j.jmbbm.2011.05.007
Zhao, J., Zhang, W., Zhang, X., Zhang, X., Lu, C., & Deng, Y. (2013). Extraction of cellulose nanofibrils from dry softwood pulp using high shear homogenization. Carbohy-drate Polymers, 97(2), 695–702. https://doi.org/10.1016/j.carbpol.2013.05.050
Zhou, R., Ma, Y., Yang, M., Cheng, Y., Ma, X., Li, B., Zhang, Y., Cui, X., Liu, M., Long, Y., & Li, C. (2025). Wound dressings using elec-trospun nanofibers: mechanisms, applica-tions, and future directions. European Polymer Journal, 113900. https://doi.org/10.1016/j.eurpolymj.2025.113900
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Mia Luares, Tabitha Vergel De Dios, Will Arboleda, Myiesha Dane Calibara, John Ray Estrellado

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See the Effect of Open Access).














