Nanocellulose and Phycocyanin as Viable Additives for Electrospun Fibers: A Review of Functional Properties, Electrospinning Parameters, and Physicochemical Characterization

Authors

  • Tabitha P. Vergel De Dios Department of Science, Technology, Engineering, and Mathematics, The Academy, De La Salle University – Laguna, Laguna Boulevard, LTI Spine Road, Barangays Biñan and Malamig, Biñan City, Laguna 4024, Philippines https://orcid.org/0009-0003-7362-3292 (unauthenticated)
  • Mia A. Luares Department of Science, Technology, Engineering, and Mathematics, The Academy, De La Salle University – Laguna, Laguna Boulevard, LTI Spine Road, Barangays Biñan and Malamig, Biñan City, Laguna 4024, Philippines https://orcid.org/0009-0003-9538-1028 (unauthenticated)
  • Myiesha Dane C. Calibara Department of Science, Technology, Engineering, and Mathematics, The Academy, De La Salle University – Laguna, Laguna Boulevard, LTI Spine Road, Barangays Biñan and Malamig, Biñan City, Laguna 4024, Philippines https://orcid.org/0009-0000-1559-1139 (unauthenticated)
  • Samuel Nelson G. Arboleda Department of Science, Technology, Engineering, and Mathematics, The Academy, De La Salle University – Laguna, Laguna Boulevard, LTI Spine Road, Barangays Biñan and Malamig, Biñan City, Laguna 4024, Philippines https://orcid.org/0009-0001-8846-1965 (unauthenticated)
  • John Ray C. Estrellado Department of Science, Technology, Engineering, and Mathematics, The Academy, De La Salle University – Laguna, Laguna Boulevard, LTI Spine Road, Barangays Biñan and Malamig, Biñan City, Laguna 4024, Philippines https://orcid.org/0000-0002-5789-1380 (unauthenticated)

DOI:

https://doi.org/10.11594/ijmaber.06.08.08

Keywords:

cyanobacteria, electrospinning, nanocellulose, parameters, phycocyanin, tensile strength, wound healing

Abstract

This literature review aims to highlight the developments and future directions in the use of nanocellulose and phycocyanin as electrospinning additives for biomedical applications, specifically in wound healing. Nanocellulose, a cellulose derivative known for its surface area, mechanical strength, and biocompatibility, is proposed as a sustainable alternative to enhancers of mechanical properties. Phycocyanin, a blue pigment from cyanobacteria, possesses anti-inflammatory, antioxidant, and antimicrobial properties, which may potentially enhance the performance of nanocellulose. The combination of the two components in electrospun fibers demonstrates significant promise for effective wound healing applications. However, progress is limited by the scarcity of experimental studies integrating both materials. One of the future directions of the study is improving the stability and shelf-life of phycocyanin within nanofibers, including approaches such as encapsulation and protective coatings. Scaling and manufacturing challenges, including high energy consumption and harsh chemical treatments in nanocellulose extraction, as well as the parameters of electrospinning, need to be addressed to enable mainstream commercialization. Further exploration of sustainable and purely physical extraction methods for nanocellulose is also critical for environmentally friendly alternatives to process scale-up and intensification.

Downloads

Download data is not yet available.

Author Biographies

  • Tabitha P. Vergel De Dios, Department of Science, Technology, Engineering, and Mathematics, The Academy, De La Salle University – Laguna, Laguna Boulevard, LTI Spine Road, Barangays Biñan and Malamig, Biñan City, Laguna 4024, Philippines

    Tabitha P. Vergel de Dios is a senior high school student and an aspiring chemical engineer. Passionate about sustainability, material sciences, and research, Tabitha is an active member of DLSU’s STEM Society as the Vice President and has represented the school internationally in research colloquium and student exchanges.

  • Mia A. Luares, Department of Science, Technology, Engineering, and Mathematics, The Academy, De La Salle University – Laguna, Laguna Boulevard, LTI Spine Road, Barangays Biñan and Malamig, Biñan City, Laguna 4024, Philippines

    Mia A. Luares is a senior high school student in the STEM department of DLSU Laguna. She has been a consistent honors student throughout her educational journey, and aspires to pursue a degree in chemical engineering. She is also an advocate of animal welfare and mental health as a member of DLSU Pusa and Haven, respectively.

  • Myiesha Dane C. Calibara, Department of Science, Technology, Engineering, and Mathematics, The Academy, De La Salle University – Laguna, Laguna Boulevard, LTI Spine Road, Barangays Biñan and Malamig, Biñan City, Laguna 4024, Philippines

    Myiesha Dane C. Calibara is a Grade 12 STEM student at De La Salle University with aspirations of becoming a dermatologist. She has a strong passion for dermatology and skincare. Beyond the sciences, she actively explores the arts, serving as an Actor’s head for Teatro Lasalyano and an active member of DLSU Junior Paragon.

  • Samuel Nelson G. Arboleda, Department of Science, Technology, Engineering, and Mathematics, The Academy, De La Salle University – Laguna, Laguna Boulevard, LTI Spine Road, Barangays Biñan and Malamig, Biñan City, Laguna 4024, Philippines

    Will Arboleda is a Grade 12 STEM student from DLSU Laguna. He has past achievements in robotics competitions internationally and aims to graduate with a degree in game development. Will also has membership in school organizations, as an actor in Teatro Lasalyano and as a feature writer in La Nouvelle.

  • John Ray C. Estrellado, Department of Science, Technology, Engineering, and Mathematics, The Academy, De La Salle University – Laguna, Laguna Boulevard, LTI Spine Road, Barangays Biñan and Malamig, Biñan City, Laguna 4024, Philippines

    John Ray C. Estrellado is a licensed chemical engineer currently taking his Master of Science in Chemical Engineering in De La Salle University. His research interests include encapsulation technologies and hydrocolloids. He is teaching practical research courses under the Department of Science, Technology, Engineering, and Mathematics at DLSU Integrated School.

References

Abazari, M. F., Gholizadeh, S., Karizi, S. Z., Bir-gani, N. H., Abazari, D., Paknia, S., De-rakhshankhah, H., Allahyari, Z., Amini, S. M., Hamidi, M., & Delattre, C. (2021). Re-cent Advances in Cellulose-Based Struc-tures as the Wound-Healing Biomaterials: A Clinically Oriented review. Applied Sci-ences, 11(17), 7769. https://doi.org/10.3390/app11177769

Adli, S. A., Ali, F., Azmi, A. S., Anuar, H., Nasir, N. a. M., Hasham, R., & Idris, M. K. H. (2020). Development of biodegradable cosmetic patch using a polylactic Ac-id/Phycocyanin–Alginate composite. Pol-ymers, 12(8), 1669. https://doi.org/10.3390/polym12081669

Ahmed, S., Khan, R. A., & Rashid, T. U. (2025). Cellulose nanocrystal based electrospun nanofiber for biomedical applications–A review. Carbohydrate Polymers, 348(Part A), 122838. https://doi.org/10.1016/j.carbpol.2024.122838

Aruna, S. T., Balaji, L. S., Senthil Kumar, S., & Shri Prakash, B. (2017). Electrospinning in solid oxide fuel cells – A review. Re-newable and Sustainable Energy Reviews, 67, 673–682. https://doi.org/10.1016/j.rser.2016.09.003

Bakar, S. S. S., Fong, K. C., Eleyas, A., & Nazeri, M. F. M. (2018). Effect of voltage and flow rate electrospinning parameters on

polyacrylonitrile electrospun fibers. IOP Conference Series Materials Science and Engineering, 318, 012076. https://doi.org/10.1088/1757-899x/318/1/012076

Bülbül, E. Ö., Okur, M. E., Okur, N. Ü., & Siafa-ka, P. I. (2022). Traditional and advanced wound dressings: physical characteriza-tion and desirable properties for wound healing. In Elsevier eBooks (pp. 19–50). https://doi.org/10.1016/b978-0-323-90514-5.00020-1

Chen, K., Hu, H., Zeng, Y., Pan, H., Wang, S., Zhang, Y., Shi, L., Tan, G., Pan, W., & Liu, H. (2022). Recent advances in electro-spun nanofibers for wound dressing. Eu-ropean Polymer Journal, 178, 111490. https://doi.org/10.1016/j.eurpolymj.2022.111490

Couret, L., Irle, M., Belloncle, C., & Cathala, B. (2017). Extraction and characterization of cellulose nanocrystals from post-consumer wood fiberboard waste. Cellu-lose, 24(5), 2125–2137. https://doi.org/10.1007/s10570-017-1252-7

Das, S. K., Chakraborty, S., Naskar, S., & Ra-jabalaya, R. (2021). Techniques and methods used for the fabrication of bi-onanocomposites. In Elsevier eBooks (pp. 17–43). https://doi.org/10.1016/b978-0-12-821280-6.00007-6

De Vrieze, S., Van Camp, T., Nelvig, A. et al. The effect of temperature and humidity on electrospinning. J Mater Sci 44, 1357–1362 (2009). https://doi.org/10.1007/s10853-008-3010-6

Dranseikienė, D., Balčiūnaitė-Murzienė, G., Karosienė, J., Morudov, D., Juodžiukynienė, N., Hudz, N., Ger-butavičienė, R. J., & Savickienė, N. (2022). Cyano-Phycocyanin: Mechanisms of ac-tion on human skin and future perspec-tives in medicine. Plants, 11(9), 1249. https://doi.org/10.3390/plants11091249

Dumanli, A. G. (2016). Nanocellulose and its Composites for Biomedical Applications. Current Medicinal Chemistry, 24(5), 512–528. https://doi.org/10.2174/0929867323666161014124008

Fernandes, R., Campos, J., Serra, M., Fidalgo, J., Almeida, H., Casas, A., Toubarro, D., & Barros, A. I. R. N. A. (2023). Exploring the benefits of phycocyanin: from spirulina cultivation to its widespread applications. Pharmaceuticals, 16(4), 592. https://doi.org/10.3390/ph16040592

Fu, Y., and Zhu, J. (2021). "Green design and recycling systems for solving the dilemma of disposable chopsticks waste caused by online food delivery: A review," BioRe-sources 16(4), 8640-8656.https://doi.org/10.15376/biores.16.4.fu

Gao, M., Yang, Z., Liang, W., Ao, T., & Chen, W. (2023). Recent advanced freestanding pseudocapacitive electrodes for efficient capacitive deionization. Separation and Purification Technology, 324, 124577. https://doi.org/10.1016/j.seppur.2023.124577

Ghomi, E. R., Khalili, S., Khorasani, S. N., Neisiany, R. E., & Ramakrishna, S. (2019). Wound dressings: Current advances and future directions. Journal of Applied Pol-ymer Science, 136(27). https://doi.org/10.1002/app.47738

Goswami, R., Singh, S., Narasimhappa, P., Ramamurthy, P. C., Mishra, A., Mishra, P. K., Joshi, H. C., Pant, G., Singh, J., Kumar, G., Khan, N. A., & Yousefi, M. (2024). Nanocellulose: A comprehensive review investigating its potential as an innova-tive material for water remediation. In-ternational Journal of Biological Macro-molecules, 254(Part 3), 127465. https://doi.org/10.1016/j.ijbiomac.2023.127465

Hao, Q., Schossig, J., Davide, T., Towolawi, A., Zhang, C., & Lu, P. (2024). Gravity-Driven Ultrahigh-Speed Electrospinning for the Production of Ethyl Cellulose Fibers with Tunable Porosity for Oil Absorption. ACS Sustainable Chemistry & Engineering, 13(1), 507–517. https://doi.org/10.1021/acssuschemeng.4c08259

Hsieh, Y. (2018). Cellulose Nanofibers: Elec-trospinning and Nanocellulose Self‐Assemblies. Advanced Green Composites, 67–95. https://doi.org/10.1002/9781119323327.ch4

Izadi, M., & Latifi, E. (2022). Comparison of the antibacterial properties of phycocyanin and its SNPs and their effects on rat blood cells and liver enzymes. Beni-Suef Univer-sity Journal of Basic and Applied Sciences, 11(1). https://doi.org/10.1186/s43088-022-00236-w

Ji, X., Guo, J., Guan, F., Liu, Y., Yang, Q., Zhang, X., & Xu, Y. (2021). Preparation of elec-trospun polyvinyl Alcohol/Nanocellulose composite film and evaluation of its bio-medical performance. Gels, 7(4), 223. https://doi.org/10.3390/gels7040223

Jodnok, S., Choeisai, P., Kruehong, C., & Choeisai, K. (2021b). Recycling disposa-ble bamboo chopstick waste as a renew-able energy resource: Case study in Khon Kaen University, Thailand. Sustainable Environment Research, 31(1). https://doi.org/10.1186/s42834-021-00101-y

Kargarzadeh, H., Huang, J., Lin, N., Ahmad, I., Mariano, M., Dufresne, A., Thomas, S., & Gałęski, A. (2018). Recent developments in nanocellulose-based biodegradable polymers, thermoplastic polymers, and porous nanocomposites. Progress in Pol-ymer Science, 87, 197–227. https://doi.org/10.1016/j.progpolymsci.2018.07.008

Kaya, S., & Derman, S. (2023). İDEAL YARA ÖRTÜSÜNÜN ÖZELLİKLERİ. Ankara Uni-versitesi Eczacilik Fakultesi Dergisi, 47(3), 5. https://doi.org/10.33483/jfpau.1253376

Khandual, S., Sanchez, E. O. L., Andrews, H. E., & De La Rosa, J. D. P. (2021). Phycocya-nin content and nutritional profile of Ar-throspira platensis from Mexico: efficient extraction process and stability evalua-tion of phycocyanin. BMC Chemistry, 15(1). https://doi.org/10.1186/s13065-021-00746-1

Khodayari, A., Vats, S., Mertz, G., Schnell, C. N., Fuentes Rojas, C., & Seveno, D. (2025). Electrospinning of cellulose nanocrystals: Procedure and optimization. Carbohy-drate Polymers, 347, 122698. https://doi.org/10.1016/j.carbpol.2024.122698

Kumar, P., Miller, K., Kermanshahi-Pour, A., Brar, S. K., Beims, R. F., & Xu, C. C. (2022). Nanocrystalline cellulose derived from spruce wood: Influence of process pa-rameters. International Journal of Biolog-ical Macromolecules, 221, 426–434. https://doi.org/10.1016/j.ijbiomac.2022.09.017

Leong, M., Kong, Y., Harun, M., Looi, C., & Wong, W. (2023). Current advances of nanocellulose application in biomedical field. Carbohydrate Research, 532, 108899. https://doi.org/10.1016/j.carres.2023.108899

Luo, C. (2013). China’s 80 billion disposable chopsticks a burden on forests. Hong Kong: South China Morning Post. https://www.scmp.com/news/china/article/1188299/chinas-80-billion-disposable-chopsticks-burden-forests

Meng, Z., Liu, J., Zhang, R., Ren, Y., Qi, Q., Cui, B., Gou, Y., Zhuang, S., Zhao, T., Liu, Q., Bao, X., & Ren, C. (2025). Phycocyanin-based multifunctional hydrogel with self-healing, hemostatic, antioxidative, and antibacterial activity for wound healing. International Journal of Biological Mac-romolecules, 310(Part 2), 143254. https://doi.org/10.1016/j.ijbiomac.2025.143254

Moon, R.J., Schueneman, G.T. & Simonsen, J. Overview of Cellulose Nanomaterials, Their Capabilities and Applications. JOM 68, 2383–2394 (2016). https://doi.org/10.1007/s11837-016-2018-7

Mouro, C., & Gouveia, I. C. (2023). Electrospun wound dressings with antibacterial func-tion: a critical review of plant extract and essential oil incorporation. Critical Re-views in Biotechnology, 44(4), 641–659. https://doi.org/10.1080/07388551.2023.2193859

Muraleedharan, M. N., Karnaouri, A., Piatkova, M., Ruiz-Caldas, M., Matsakas, L., Liu, B., Rova, U., Christakopoulos, P., & Mathew, A. P. (2021). Isolation and modification of nano-scale cellulose from organosolv-treated birch through the synergistic ac-tivity of LPMO and endoglucanases. In-ternational Journal of Biological Macro-molecules, 183, 101–109. https://doi.org/10.1016/j.ijbiomac.2021.04.136

Mutlu, B., Çaylak, S., & Duman, Ş. (2022). In-corporation of cerium oxide into hydroxy-apatite/chitosan composite scaffolds for bone repair. https://doiserbia.nb.rs/Article.aspx?ID=1820-61312203207M

Mutlu, G., Calamak, S., Ulubayram, K., & Guven, E. (2017). Curcumin-loaded electrospun PHBV nanofibers as potential wound-dressing material. Journal of Drug Deliv-ery Science and Technology, 43, 185–193. https://doi.org/10.1016/j.jddst.2017.09.017

Patil, T. V., Patel, D. K., Dutta, S. D., Ganguly, K., Santra, T. S., & Lim, K. (2021). Nanocellu-lose, a versatile platform: From the deliv-ery of active molecules to tissue engi-neering applications. Bioactive Materials, 9, 566–589. https://doi.org/10.1016/j.bioactmat.2021.07.006

Pellegrino, P., Bramanti, A. P., Farella, I., Cas-cione, M., De Matteis, V., Della Torre, A., Quaranta, F., & Rinaldi, R. (2022). Pulse-Atomic Force Lithography: a powerful nanofabrication technique to fabricate constant and Varying-Depth nanostruc-tures. Nanomaterials, 12(6), 991. https://doi.org/10.3390/nano12060991

Raju, V., Revathiswaran, R., Subramanian, K. S., Parthiban, K. T., Chandrakumar, K., Anoop, E. V., & Chirayil, C. J. (2023). Isola-tion and characterization of nanocellu-lose from selected hardwoods, viz., Euca-lyptus tereticornis Sm. and Casuarina eq-uisetifolia L., by steam explosion method. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-022-26600-5

Refate, A., Mohamed, Y., Mohamed, M., Sobhy, M., Samhy, K., Khaled, O., Eidaroos, K., Batikh, H., El-Kashif, E., El-Khatib, S., & Mehanny, S. (2023). Influence of electro-spinning parameters on biopolymers nanofibers, with emphasis on cellulose & chitosan. Heliyon, 9(6), e17051. https://doi.org/10.1016/j.heliyon.2023.e17051

Resch, A., Staud, C., & Radtke, C. (2021). Nano-cellulose‐based wound dressing for con-servative wound management in children with second‐degree burns. International Wound Journal, 18(4), 478–486. https://doi.org/10.1111/iwj.13548

Ribeiro, A. S., Costa, S. M., Ferreira, D. P., Calhelha, R. C., Barros, L., Stojković, D., Soković, M., Ferreira, I. C., & Fangueiro, R. (2021). Chitosan/nanocellulose elec-trospun fibers with enhanced antibacte-rial and antifungal activity for wound dressing applications. Reactive and Func-tional Polymers/Reactive & Functional Polymers, 159, 104808. https://doi.org/10.1016/j.reactfunctpolym.2020.104808

Safari, R., Amiri, Z. R., & Kenari, R. E. (2020). Antioxidant and antibacterial activities of C-phycocyanin from common name Spir-ulina platensis. Iranian Journal of Fisher-ies and Sciences, 19(4), 1911–1927. https://doi.org/10.22092/ijfs.2019.118129

Shankaran, D. R. (2018). Cellulose nanocrys-tals for health care applications. In Else-vier eBooks (pp. 415–459). https://doi.org/10.1016/b978-0-08-101971-9.00015-6

Shanmugam, A., Sigamani, S., Venkatachalam, H., Jayaraman, J., & Ramamurthy, D. (2017). Antibacterial activity of extracted phycocyanin from Oscillatoria sp. Journal of Applied Pharmaceutical Science. https://doi.org/10.7324/japs.2017.70310

Sihag, S. S., Pal, J., & Yadav, M. (2022). Extrac-tion and Characterization of Nanocellu-lose from Wheat Straw: Facile Approach. Journal of Water and Environmental Nanotechnology, 7(3), 317-331. https://doi.org/10.22090/jwent.2022.03.007

Singh, H., Verma, A. K., Trivedi, A. K., & Gupta, M. (2023). Characterization of nanocellu-lose isolated from bamboo fibers. Mate-rials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.02.300

Singh, Y. P., Dasgupta, S., Nayar, S., & Bhaskar, R. (2020). Optimization of electrospin-ning process & parameters for producing defect-free chitosan/polyethylene oxide nanofibers for bone tissue engineering. Journal of Biomaterials Science, Polymer Edition, 31(6), 781–803. https://doi.org/10.1080/09205063.2020.1718824

Suzuki, A., Sasaki, C., Asada, C., & Nakamura, Y. (2018). Production of cellulose nano-fibers from Aspen and Bode chopsticks using a high temperature and high pres-sure steam treatment combined with milling. Carbohydrate Polymers, 194, 303–310. https://doi.org/10.1016/j.carbpol.2018.04.047

Tamo, A. K. (2024). Nanocellulose-Based Hy-drogels as Versatile Bio-Based Materials with Interesting Functional Properties for Tissue Engineering Applications. Journal of Materials Chemistry B, 12(32), 7692–7759. https://doi.org/10.1039/d4tb00397g

The Economist. (2014, September 13). Sticks in the gullet. The Economist. https://www.economist.com/china/2014/09/13/sticks-in-the-gullet

Tripatanasuwan, S., Zhong, Z., & Reneker, D. H. (2007). Effect of evaporation and solidifi-cation of the charged jet in electrospin-ning of poly(ethylene oxide) aqueous so-lution. Polymer, 48(19), 5742–5746. https://doi.org/10.1016/j.polymer.2007.07.045

Trushina, D. B., Borodina, T. N., Belyakov, S., & Antipina, M. N. (2022). Calcium carbonate vaterite particles for drug delivery: Ad-vances and challenges. Materials Today Advances, 14, 100214. https://doi.org/10.1016/j.mtadv.2022.100214

Usov, I., Nyström, G., Adamcik, J., Handschin, S., Schütz, C., Fall, A., Bergström, L., & Mezzenga, R. (2015). Understanding nanocellulose chirality and structure–properties relationship at the single fibril level. Nature Communications, 6(1). https://doi.org/10.1038/ncomms8564

Vergel De Dios, T. P., Luares, M. A., Arboleda, W., Calibara, M. D. C., & Estrellado, J. R. C. (2025). Multi-Objective Taguchi Optimi-zation of Electrospinning Parameters for the Development of Poly-(vinyl alco-hol)/Waste Wooden Utensil Nanocellu-lose/Phycocyanin Electrospun Fibers. In-ternational Journal of Multidisciplinary: Applied Business and Education Research, 6(6), 3045-3069. https://doi.org/10.11594/ijmaber.06.06.31

Wang, D., Cheng, W., Yue, Y., Xuan, L., Ni, X., & Han, G. (2018). Electrospun Cellulose Nanocrystals/Chitosan/Polyvinyl Alcohol Nanofibrous Films and their Exploration to Metal Ions Adsorption. Polymers, 10(10), 1046. https://doi.org/10.3390/polym10101046

Wcw-Admin-Support. (2023, April 28). Types of wound dressings and when to use them. West Coast Wound & Skin Care. https://westcoastwound.com/types-of-wound-dressings-and-when-to-use-them/

Yang, G.-Z., Li, H.-P., Yang, J.-H., Wan, J., & Yu, D.-G. (2017). Influence of working tem-perature on the formation of electrospun polymer nanofibers. Nanoscale Research Letters, 12(1), 55. https://doi.org/10.1186/s11671-016-1824-8

Zahra, F. T., Zhang, Y., Ajayi, A. O., Quick, Q., & Mu, R. (2024). Optimization of electro-spinning parameters for lower molecular weight polymers: A case study on polyvi-nylpyrrolidone. Polymers, 16(9), 1217. https://doi.org/10.3390/polym16091217

Zaman, H. U., Islam, J., Khan, M. A., & Khan, R. A. (2011). Physico-mechanical properties of wound dressing material and its bio-medical application. Journal of the Me-chanical Behavior of Biomedical Materi-als/Journal of Mechanical Behavior of Bi-omedical Materials, 4(7), 1369–1375. https://doi.org/10.1016/j.jmbbm.2011.05.007

Zhao, J., Zhang, W., Zhang, X., Zhang, X., Lu, C., & Deng, Y. (2013). Extraction of cellulose nanofibrils from dry softwood pulp using high shear homogenization. Carbohy-drate Polymers, 97(2), 695–702. https://doi.org/10.1016/j.carbpol.2013.05.050

Zhou, R., Ma, Y., Yang, M., Cheng, Y., Ma, X., Li, B., Zhang, Y., Cui, X., Liu, M., Long, Y., & Li, C. (2025). Wound dressings using elec-trospun nanofibers: mechanisms, applica-tions, and future directions. European Polymer Journal, 113900. https://doi.org/10.1016/j.eurpolymj.2025.113900

Downloads

Published

2025-08-23

How to Cite

De Dios, T. P. V. ., Luares, M. A., Calibara, M. D. C., Arboleda, S. N. G. ., & Estrellado, J. R. C. (2025). Nanocellulose and Phycocyanin as Viable Additives for Electrospun Fibers: A Review of Functional Properties, Electrospinning Parameters, and Physicochemical Characterization. International Journal of Multidisciplinary: Applied Business and Education Research, 6(8), 3826-3840. https://doi.org/10.11594/ijmaber.06.08.08